Loading...
Search for: adsorption
0.013 seconds
Total 559 records

    Magnetic carbon nanocomposite derived from waste tire rubber for atrazine removal from aqueous solutions

    , Article Desalination and Water Treatment ; Volume 252 , 2022 , Pages 219-232 ; 19443994 (ISSN) Heydarian Dana, N ; Borghei, M ; Takdastan, A ; Javid, A. H ; Zazouli, M. A ; Sharif University of Technology
    Desalination Publications  2022
    Abstract
    In this study magnetite nanoparticles (Fe3 O4) were synthesized and embedded in activated carbon (AC) derived from waste tire rubber to produce magnetic activated carbon. The atrazine (C8 H14 ClN5) adsorption was performed over (AC/Fe3 O4) nanocomposite in an aqueous solution and adsorp-tion isotherms and kinetics were determined. The effects of some parameters such as (pH, contact time, adsorbent dosage and initial pesticide concentration) were investigated. Characterization of nanocomposite was carried out by high-resolution scanning electron microscopy and transmission electron microscopy, X-ray powder diffraction, vibrating sample magnetometer, Brunauer–Emmett– Teller, Fourier-transform... 

    Simultaneous removal of mercury ions and cationic and anionic dyes from aqueous solution using epichlorohydrin cross-linked chitosan @ magnetic Fe3O4/activated carbon nanocomposite as an adsorbent

    , Article Diamond and Related Materials ; Volume 124 , 2022 ; 09259635 (ISSN) Kaveh, R ; Bagherzadeh, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    An economical epichlorohydrin cross-linked chitosan @ magnetic Fe3O4/activated carbon nanocomposite, CH-EP@Fe3O4/AC, was successfully synthesized and used as a suitable adsorbent material for removal of a triphenylmethane cationic dye, Malachite green (MG), an anionic dye, Reactive red 120 (RR120), and Mercury ions (Hg2+) from aqueous solution. The prepared adsorbent has been characterized with Fourier transform infrared spectroscopy, X-ray diffraction, Scanning electron microscopy, Thermogravimetric analysis, Brunauer–Emmett–Teller analysis as well as Vibrating sample magnetometer. According to the result of Brunauer–Emmett–Teller isotherm, the prepared adsorbent has a specific surface area... 

    Hydrothermal carbonization of digested sewage sludge coupled with Alkali activation: Integrated approach for sludge handling, optimized production, characterization and Pb(II) adsorption

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 133 , 2022 ; 18761070 (ISSN) Malool, M. E ; KeshavarzMoraveji, M ; Shayegan, J ; Sharif University of Technology
    Taiwan Institute of Chemical Engineers  2022
    Abstract
    Background: Integrated sewage sludge handling and heavy metal management are important issues that scientists are working to solve today. Methods: Hydrothermal carbonization of dewatered digested sewage sludge (DDSS) under various conditions is carried out in this work, followed by alkali activation. The response surface methodology is used to investigate the operating process conditions and optimize them in order to produce hydrochar with the highest modified adsorption capacity (yield and Pb2+ adsorption). Significant Findings: The ideal conditions are 182.4°C, 4.9 hours, 5.025 (w/w) water/DDSS ratio, and 3.5 (w/w) ZnCl2/DDSS ratio. In addition, the Langmuir isotherm (qmax =109.3 mg/g) and... 

    Applications of the quartz crystal microbalance in energy and environmental sciences: From flow assurance to nanotechnology

    , Article Fuel ; Volume 313 , 2022 ; 00162361 (ISSN) Roshani, M. M ; Rostaminikoo, E ; Joonaki, E ; Mirzaalian Dastjerdi, A ; Najafi, B ; Taghikhani, V ; Hassanpouryouzband, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In the last decade, there has been a swift development in several scientific research works in which the quartz crystal microbalance (QCM) technique has played a critical role in unravelling different aspects of energy and environmental materials and biological substances as well as all corresponding molecular interactions within those media. We comprehensively review the numerous types of surface chemistries, including but not limited to hydrogen bonding, hydrophobic and electrostatic interactions, self-assembled monolayers and ionic bonding, that are monitored using QCMs in a variety of fields such as energy and chemical industries in addition to the biology, medicine and nanotechnology... 

    UiO-66 metal–organic frameworks in water treatment: A critical review

    , Article Progress in Materials Science ; Volume 125 , 2022 ; 00796425 (ISSN) Ahmadijokani, F ; Molavi, H ; Rezakazemi, M ; Tajahmadi, S ; Bahi, A ; Ko, F ; Aminabhavi, T. M ; Li, J. R ; Arjmand, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Metal-organic frameworks (MOFs) have recently achieved much attention to eliminating toxic pollutants because of their attractive attributes, including large specific surface area, ultra-high porosity, abundant active adsorption sites, tunable surface chemistry, well-controlled pore size distribution, and strong host–guest interactions. Among the many developed MOFs, the Zr-based MOFs, particularly the UiO-66 family, are considered extremely attractive for wastewater treatment applications. The fascinating properties of UiO-66 such as high thermal stability, superior chemical resistance towards several solvents, including benzene, acetone, different alcohols, dimethylformamide, acidic and... 

    Optimizing temperature and introducing new process arrangements for elevating clay's longevity based on the known poisons in the separation process of trace olefins from aromatics

    , Article Journal of Chemical Technology and Biotechnology ; Volume 97, Issue 4 , 2022 , Pages 973-983 ; 02682575 (ISSN) Rouhani, H ; Farhadi, F ; Akbari Kenari, M ; Ramakrishna, S ; Sharif University of Technology
    John Wiley and Sons Ltd  2022
    Abstract
    BACKGROUND: The clay treatment widely utilized to reduce unsaturated components in aromatic stream has a detrimental effect on catalyst lifetime. Due to the short lifetime of commercial clay, a huge number of studies have been carried out to address this problem over the last decade. This study aims to optimize the temperature for longer serviceability of clay by removal of unsaturated aliphatic components from aromatic streams through the adsorption and catalytic properties of clay. A novel process arrangement is introduced by scheduling the reuse of deactivated clay that is discarded after deactivation. RESULTS: Results showed that the suitable range of temperature for olefin removal is... 

    Green synthesis of PEG-coated MIL-100(Fe) for controlled release of dacarbazine and its anticancer potential against human melanoma cells

    , Article International Journal of Pharmaceutics ; Volume 618 , 2022 ; 03785173 (ISSN) Barjasteh, M ; Vossoughi, M ; Bagherzadeh, M ; Pooshang Bagheri, K ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this study, the potential of using MIL-100(Fe) metal–organic framework (MOF) for loading and controlling the release of dacarbazine (DTIC) was evaluated for in vitro treatment of melanoma. The drug loading was performed during the green synthesis of MIL-100(Fe) in an aqueous media without using any harmful solvents, to obtain MIL-DTIC. The surface of this structure was then coated with polyethylene glycol (PEG) in the same aqueous solution to synthesize MIL-DTIC-PEG. The synthesized samples were characterized using various methods. Their release profile was studied in phosphate-buffered saline (PBS) and simulated cutaneous medium (SCM). The cytotoxicity of DTIC and its nano-MOF... 

    Improving dye removal and antifouling performance of polysulfone nanofiltration membranes by incorporation of UiO-66 metal-organic framework

    , Article Journal of Environmental Chemical Engineering ; Volume 10, Issue 3 , 2022 ; 22133437 (ISSN) Ahmadipouya, S ; Mousavi, S. A ; Shokrgozar, A ; Mousavi, D. V ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In the present work, a series of polysulfone (PSf) mixed-matrix nanofiltration membranes containing highly water stable UiO-66 metal-organic framework (MOF) were prepared via a simple phase inversion technique. At first, UiO-66 particles were synthesized via a solvothermal technique, activated via two various activation methods, including Soxhlet extraction and centrifugation methods. Then their adsorption performance was investigated for adsorption of anionic methyl orange (MO)/methyl red (MR) and cationic methylene blue (MB)/malachite green (MG) dyes from water. The activated UiO-66 particles via the Soxhlet extraction method (named S-UiO-66) showed better performance for dye adsorption... 

    Label-Free real-time detection of HBsAg using a QCM immunosensor

    , Article Clinical Laboratory ; Volume 68, Issue 4 , 2022 , Pages 707-720 ; 14336510 (ISSN) Saffari, Z ; Ghavidel, A ; Ahangari Cohan, R ; Hamidi Fard, M ; Khoobi, M ; Aghasadeghi, M ; Norouzian, D ; Sharif University of Technology
    Verlag Klinisches Labor GmbH  2022
    Abstract
    Background: Hepatitis B virus surface antigen (HBsAg) is an important protein in both diagnosis and prevention of hepatitis B infection. In the current study, a piezoelectric immunosensor based on antibody-antigen interaction was designed to detect HBsAg. A quartz crystal microbalance system was employed to detect antibody-antigen interaction. Methods: At first, an oscillator was designed to measure the resonant frequency affected by the reactants using IC 74LVC1GX04. Antibody against HBsAg was immobilized on 10 MHz AT-cut quartz crystal. The surface modifications were monitored by atomic force microscopy (AFM) and contact angle measurements. Different concentrations of antibody were used... 

    Dynamics of antimicrobial peptide encapsulation in carbon nanotubes: the role of hydroxylation

    , Article International Journal of Nanomedicine ; Volume 17 , 2022 , Pages 125-136 ; 11769114 (ISSN) Dehaghani, M.Z ; Yousefi, F ; Seidi, F ; Sajadi, S. M ; Rabiee, N ; Habibzadeh, S ; Esmaeili, A ; Mashhadzadeh, A. H ; Spitas, C ; Mostafavi, E ; Saeb, M. R ; Sharif University of Technology
    Dove Medical Press Ltd  2022
    Abstract
    Introduction: Carbon nanotubes (CNTs) have been widely employed as biomolecule carriers, but there is a need for further functionalization to broaden their therapeutic application in aqueous environments. A few reports have unraveled biomolecule–CNT interactions as a measure of response of the nanocarrier to drug-encapsulation dynamics. Methods: Herein, the dynamics of encapsulation of the antimicrobial peptide HA-FD-13 (accession code 2L24) into CNTs and hydroxylated CNTs (HCNTs) is discussed. Results: The van der Waals (vdW) interaction energy of CNT–peptide and HCNT–peptide complexes decreased, reaching −110.6 and −176.8 kcal.Mol−1, respectively, once encapsulation of the peptide inside... 

    Synthesis of "(aminomethyl)phosphonic acid-functionalized graphene oxide", and comparison of its adsorption properties for thorium(IV) ion, with plain graphene oxide

    , Article Radiochimica Acta ; Volume 110, Issue 1 , 2022 , Pages 37-49 ; 00338230 (ISSN) Doram, A ; Outokesh, M ; Ahmadi, S. J ; Zahakifar, F ; Sharif University of Technology
    De Gruyter Open Ltd  2022
    Abstract
    The current study presents a simple and scalable method for the synthesis of (aminomethyl)phosphonic acid-functionalized graphene oxide (AMPA-GO) adsorbent. The chemical structure of the new material was disclosed by different instrumental analyses (e.g. FTIR, Raman, XPS, AFM, TEM, XRD, CHN, and UV), and two pertinent mechanisms namely nucleophilic substitution and condensation were suggested for its formation. Adsorption experiments revealed that both AMPA-GO and plain GO have a high affinity toward Th(IV) ions, but the AMPA-GO is superior in terms of adsorption capacity, rate of adsorption, selectivity, pH effect, etc. Indeed, the AMPA-GO can uptake Th(IV) nearly instantaneously, and... 

    Adsorption and sustained release of doxorubicin from N-carboxymethyl chitosan/polyvinyl alcohol/poly(ε-caprolactone) composite and core-shell nanofibers

    , Article Journal of Drug Delivery Science and Technology ; Volume 67 , 2022 ; 17732247 (ISSN) Abasalta, M ; Asefnejad, A ; Khorasani, M. T ; Saadatabadi, A. R ; Irani, M ; Sharif University of Technology
    Editions de Sante  2022
    Abstract
    The core-shell nanofibers, produced by the coaxial electrospinning method, are good candidates for delivery of anticancer drugs due to their continuous release without initial burst release. In this work, the N-carboxymethyl chitosan (N-CMCS)-polyvinyl alcohol (PVA)/poly(ε-caprolactone) (PCL) composite and core-shell nanofibers were prepared by two-nozzle and coaxial electrospinning techniques, respectively. Doxorubicin (DOX) as an anticancer drug was loaded into the N-CMCS/PVA/PCL nanofibers fabricated by two-nozzle and coaxial electrospinning. The performance of nanofibers was compared for the adsorption and controlled release of DOX against MCF-7 breast cancer cells death in vitro. The... 

    Magnetic, thermally stable, and superhydrophobic polyurethane sponge: A high efficient adsorbent for separation of the marine oil spill pollution

    , Article Chemosphere ; Volume 287 , 2022 ; 00456535 (ISSN) Habibi, N ; Pourjavadi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Herein, we demonstrated a facile method for the fabrication of magnetic and superhydrophobic polyurethane sponge with water contact angle of 159° as an adsorbent for cleanup the marine oil spill pollution. For this aim, a polyurethane sponge was coated with carbon black (CB), hexagonal boron nitride (h-BN)@Fe3O4, and acrylic resin and then characterized by different techniques. Owing to the chemical and thermal stability of h-BN and CB, the modified sponge was stable under corrosive conditions (pH = 1–14 and salt solutions) and at different temperatures (−12 °C–105 °C). In addition to common oils and organic solvents, we also used the real spilled oils containing monoaromatics and... 

    Effective promotion of g–C3N4 photocatalytic performance via surface oxygen vacancy and coupling with bismuth-based semiconductors towards antibiotics degradation

    , Article Chemosphere ; Volume 287 , 2022 ; 00456535 (ISSN) Hasanvandian, F ; Moradi, M ; Aghaebrahimi Samani, S ; Kakavandi, B ; Rahman Setayesh, S ; Noorisepehr, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this research, the potential of bismuth chromate (BCO), a new bismuth-based semiconductor belongs to the family of Bi2XO6 (X = Mo, W, or Cr), was introduced by a novel 1D/2D structure consist of BCO nanobelts and N2-freezed ultra-wrinkled graphitic carbon nitride (N–CN) nanosheets. To enhance intimate contact between BCO and N–CN (BCO/N–CN composite), surface oxygen vacancy (VO) was created as an efficient electron transfer highway using a simple alkaline-treatment-assisted method. Various characterization techniques, including XRD, FT-IR, EPR, FE-SEM, TEM, BET, DRS, PL, EIS, and photocurrent transient analyses were conducted to elucidate the physicochemical aspects of catalysts. The... 

    Effect of collision on self-assembly of nanoparticles in zirconia microparticle suspension

    , Article Journal of Dispersion Science and Technology ; Volume 43, Issue 6 , 2022 , Pages 787-795 ; 01932691 (ISSN) Jiryaei, Z ; Saidi, M. H ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Nanoparticle halo mechanism is a stabilization method for microparticle suspensions. This study investigates suspension pH and nanoparticles–microparticles collision effects on the stabilization of an aqueous binary suspension. The long-term turbidity measurements show that for the nanosilica suspension stability is directly correlated with pH values; however, in the cases of zirconia and binary suspensions, it is not a monotonic function of pH. It is shown that for binary suspension, the halo mechanism is the primary method affecting the stability of the suspension. The suspension is best-stabilized at pH = 5 that is associated with high halo mechanism efficiency, while increased repulsive... 

    Low loaded MoS2/Carbon cloth as a highly efficient electrocatalyst for hydrogen evolution reaction

    , Article International Journal of Hydrogen Energy ; Volume 47, Issue 3 , 2022 , Pages 1579-1588 ; 03603199 (ISSN) Shaker, T ; Mehdipour, H ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Active edge sites of MoS2 nanosheets exhibit promising futures for hydrogen evolution reaction (HER), comparable with remarkable performances of highly cost platinum. However, 3D structures of MoS2 suffer from a lack of high mobility and unexposed active sites which lower the electrocatalytic activity. In this study, we show that there is a balance between increasing the active sites on the one hand and managing the charge transfer to facilitate the reaction on the other hand, and achieving this balance increases the efficiency of the electrocatalyst tremendously. For this purpose, we directly attached exfoliated MoS2 nanosheets onto carbon cloth (CC) substrate as a 3D network of conductive... 

    Removal of methylene blue dye from aqueous solutions using carboxymethyl-β-Cyclodextrin-Fe3O4 nanocomposite: Thermodynamics and kinetics of adsorption process

    , Article Russian Journal of Physical Chemistry A ; Volume 96, Issue 2 , 2022 , Pages 371-380 ; 00360244 (ISSN) Ghazimokri, H.S ; Aghaie, H ; Monajjemi, M ; Gholami, M. R ; Sharif University of Technology
    Pleiades journals  2022
    Abstract
    Abstract: The applicability of the synthesized carboxymethyl-β-cyclodextrin-Fe3O4 nanocomposite (CM‑β-CD-Fe3O4NPs) as a novel adsorbent for eliminating Methylene blue dye (MB) from aqueous media was investigated. Various techniques including Brunauer Emmett Teller analysis (BET), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) have been used to characterize this novel adsorbent. The effect of initial concentration (C0), pH, adsorbent dosage (dose), contact time (tc), and temperature (T, K) on the removal percentage (Ad%) of MB dye onto CM-β-CD-Fe3O4NPs was studied, and the optimum value... 

    Encapsulation of spinel CuCo2O4 hollow sphere in V2O5-decorated graphitic carbon nitride as high-efficiency double Z-type nanocomposite for levofloxacin photodegradation

    , Article Journal of Hazardous Materials ; Volume 423 , 2022 ; 03043894 (ISSN) Hasanvandian, F ; Shokri, A ; Moradi, M ; Kakavandi, B ; Rahman Setayesh, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this study, spinel CuCo2O4 (CCO) with a hierarchical hollow sphere morphology was encapsulated in V2O5-decorated ultra-wrinkled graphitic carbon-nitride (VO-UCN) for the first time via a facile glycerol-assisted solvothermal method in the interest of developing a novel high-efficiency double Z-type nano-photocatalyst (denoted as VO-UCN@CCO). The remarkable physicochemical features of the as-prepared nano-photocatalysts were verified using diverse characterization techniques including TGA, XRD, FT-IR, FE-SEM, TEM, BET, UV–vis DRS, PL, EIS, and transient photocurrent techniques. Herein, VO-UCN@CCO nanocomposite was employed for the photodisintegration of levofloxacin (LVOF) antibiotic under... 

    Corrosion inhibition of a novel antihistamine-based compound for mild steel in hydrochloric acid solution: experimental and computational studies

    , Article Scientific Reports ; Volume 12, Issue 1 , 2022 ; 20452322 (ISSN) Ghaderi, M ; Ahmad Ramazani, S. A ; Kordzadeh, A ; Mahdavian, M ; Alibakhshi, E ; Ghaderi, A ; Sharif University of Technology
    Nature Research  2022
    Abstract
    Focused on the assessment of the diphenhydramine hydrochloride (DPH) capabilities as an alternative to conventional and harmful industrial corrosion inhibitors, electrochemical techniques were employed. The optimum concentration of 1000 ppm was determined by molecular simulation and validated through electrochemical experiments. The results acquired from the electrochemical impedance spectroscopy (EIS) study showed that DPH at a concentration of 1000 ppm has a corrosion efficiency of 91.43% after 6 h immersion. The DPH molecules' orientation on the surface was assessed based on EIS predicting horizontal adsorption on the surface. Molecular simulations were done to explore the adsorption...