Loading...
Search for: afm
0.014 seconds
Total 111 records

    Barrier height and ideality factor dependency on identically produced small Au/p-Si Schottky barrier diodes

    , Article Journal of Semiconductors ; Volume 31, Issue 7 , 2010 ; 16744926 (ISSN) Yeganeh, M. A ; Rahmatollahpur, S. H ; Sharif University of Technology
    2010
    Abstract
    Small high-quality Au/P-Si Schottky barrier diodes (SBDs) with an extremely low reverse leakage current using wet lithography were produced. Their effective barrier heights (BHs) and ideality factors from current-voltage (I -V) characteristics were measured by a conducting probe atomic force microscope (C-AFM). In spite of the identical preparation of the diodes there was a diode-to-diode variation in ideality factor and barrier height parameters. By extrapolating the plots the built in potential of the Au /p-Si contact was obtained as Vbi D 0:5425 V and the barrier height value φB(C-V) was calculated to be φB(C-V) D 0:7145 V for Au/p-Si. It is found that for the diodes with diameters... 

    Surface chemistry of atmospheric plasma modified polycarbonate substrates

    , Article Applied Surface Science ; Volume 257, Issue 23 , September , 2011 , Pages 9836-9839 ; 01694332 (ISSN) Yaghoubi, H ; Taghavinia, N ; Sharif University of Technology
    2011
    Abstract
    Surface of polycarbonate substrates were activated by atmospheric plasma torch using different gas pressure, distance from the substrates, velocity of the torch and number of treatments. The modifications were analyzed by contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and UV-vis spectrophotometry. Plasma treatment caused the surface characteristics to become more hydrophilic as measured by the water contact angle, which decreased from 88° to 18°. The decrease in contact angle was mainly due to oxidation of the surface groups, leading to formation of polar groups with hydrophilic property. XPS results showed an increase in the intensity of... 

    Effects of tip mass and interaction force on nonlinear behavior of force modulation FM-AFM cantilever

    , Article Journal of Mechanics ; 2016 , Pages 1-12 ; 17277191 (ISSN) Torkanpouri, K. E ; Zohoor, H ; Habibnejad Korayem, M ; Sharif University of Technology
    Cambridge University Press  2016
    Abstract
    Influences of the tip mass, excitation mode of Frequency Modulated Atomic Force Microscope (FM-AFM) on the resonance frequency shift in force modulation (FM) mode are studied. Governing equations of motion are determined based on Timoshenko beam model with concentrated end mass. Approach point and base amplitude are set such that the FM-AFM remains just in FM mode. Either the linearized and nonlinear Derjaguin-Muller-Toporov (DMT) model are investigated. Then frequency shifts are determined for various interaction force regimes. It is showed the effect of tip mass on frequency shift is significant even for small tips. Nonlinear model shows lower frequency shifts in comparison with linearized... 

    Effects of tip mass and interaction force on nonlinear behavior of force modulation fm-afm cantilever

    , Article Journal of Mechanics ; Volume 33, Issue 2 , 2017 , Pages 257-268 ; 17277191 (ISSN) Torkanpouri, K. E ; Zohoor, H ; Habibnejad Korayem, M ; Sharif University of Technology
    Cambridge University Press  2017
    Abstract
    Influences of the tip mass, excitation mode of Frequency Modulated Atomic Force Microscope (FM-AFM) on the resonance frequency shift in force modulation (FM) mode are studied. Governing equations of motion are determined based on Timoshenko beam model with concentrated end mass. Approach point and base amplitude are set such that the FM-AFM remains just in FM mode. Either the linearized and nonlinear Derjaguin-Muller-Toporov (DMT) model are investigated. Then frequency shifts are determined for various interaction force regimes. It is showed the effect of tip mass on frequency shift is significant even for small tips. Nonlinear model shows lower frequency shifts in comparison with linearized... 

    Global sensitivity analysis of backside coating parameters on dynamic response of AM-AFM

    , Article Mechanika ; Volume 23, Issue 2 , 2017 , Pages 282-290 ; 13921207 (ISSN) Torkanpouri, K. E ; Zohoor, H ; Habibnejad Korayem, M ; Sharif University of Technology
    Kauno Technologijos Universitetas  2017
    Abstract
    Influence of backside coating parameters on dynamic response of AM-AFM is modeled. Timoshenko based beam model is used and the general nonlinear interaction force is enclosed. The coupled ODEs of motion are achieved. The mode shapes are determined for coated cantilever and the natural frequency of each mode is validated with experimental results. It is showed a shorter cantilever with tip mass have better accuracy and inelastic and massless assumptions are not proper choice for modelling of the coating. The assumed mode method is used to determine time response of system for faraway and scanning condition of AM-AFM. Amplitude of response is calculated by FFT of time domain. Sensitivity... 

    The physical and mechanical properties of Cu/Al2O3 composite synthesized by internal oxidation

    , Article Materials Science and Technology Conference and Exhibition 2009, MS and T'09, 25 October 2009 through 29 October 2009, Pittsburgh, PA ; Volume 3 , 2009 , Pages 1806-1815 ; 9781615676361 (ISBN) Soleimanpour, A. M ; Abachi, P ; Alimardani, N ; Motamen, A ; Sharif University of Technology
    Abstract
    The internal Oxidation introduces a practical method for producing copper matrix composites reinforced by alumina particles. The mechanical and physical properties of alumina reinforced copper composites and alloy specimens were investigated. This experiment involves casting of Cu-Al alloys with 0.37, 1, 2 and 3 weight percent of aluminium in non-oxidizing atmosphere with pure oxygen free copper. The composite specimens produced after internal oxidation process at 950°C for 10 hours in sealed alumina crucible. The microstructures of composite specimens were studied after internal oxidation using SEM and AFM. The hardness and electrical resistivity tests were measured. The wear properties of... 

    Characterization of polymeric membranes for membrane distillation using atomic force microscopy

    , Article Desalination and Water Treatment ; Volume 51, Issue 31-33 , 2013 , Pages 6003-6008 ; 19443994 (ISSN) Shirazi, M. M ; Bastani, D ; Kargari, A ; Tabatabaei, M ; Sharif University of Technology
    Taylor and Francis Inc  2013
    Abstract
    As membrane distillation (MD) is an under-developed separation process, specific membranes for MD applications are not yet commercially available. Therefore, microporous polymeric membranes made of hydrophobic materials fabricated for microfiltration purposes are usually used for MD applications. Characterization of such kind of membranes is important in order to achieve a better in-depth understanding of their performance and to fabricate specific membranes for MD process. One of the emerging characterization methods is atomic force microscopy (AFM) analysis. AFM is a newly developed high-resolution method that is useful for studying the surface topography of various types of membranes, and... 

    Self-assembly of tryptophan-capped gold nanoparticles onto DNA network template

    , Article Journal of Dispersion Science and Technology ; Volume 30, Issue 2 , 2009 , Pages 254-258 ; 01932691 (ISSN) Sheikholeslami, Z ; Vosoughi, M ; Alemsadeh, I ; Sharif University of Technology
    2009
    Abstract
    In this study, a simple route to the formation of DNA-gold complex has been reported, using immobilized DNA as a template. The nanoporous gold films have been prepared by the electrostatic self assembly of gold nanoparticles capped with tryptophan. Tryptophan would improve surface properties of gold nanoparticles for strongly attaching to DNA. Fourier transform infrared spectroscopy confirmed that gold nanoparticles have been capped by tryptophan. Also measured zeta potential shows that there are positive charges on the surface of gold nanoparticles. Investigations by atomic force microscopy substantially confirm that tryptophan-capped gold nanoparticles can be bonded to DNA template... 

    Fabrication of metal nanowires based on self assembly of tryptophan-capped gold nanoparticle onto DNA network template

    , Article International Journal of Nanotechnology ; Volume 6, Issue 10-11 , 2009 , Pages 1041-1049 ; 14757435 (ISSN) Sheikholeslami, Z ; Vossoughi, M ; Alemzadeh, I ; Sharif University of Technology
    2009
    Abstract
    In this study, synthesis of conductive metal nanowires by using aligned and immobilised DNA strand on solid substrate is reported. The nanoporous gold film was prepared by electrostatic self assembly of gold nanoparticles capped with tryptophan. Tryptophan would improve surface properties of gold nanoparticles for strongly attaching to DNA. Fourier transform infrared (FTIR) spectroscopy confirmed that gold nanoparticles have been capped by tryptophan. Also measured zeta potential shows that there are positive charges on the surface of gold nanoparticles. Investigations by AFM observati on substantially confirm that tryptophan-capped gold nanoparticles can be bonded to DNA template... 

    Stereometric analysis of TiO2 thin films deposited by electron beam ion assisted

    , Article Optical and Quantum Electronics ; Volume 52, Issue 5 , 2020 Shakoury, R ; Arman, A ; Ţălu, Ş ; Dastan, D ; Luna, C ; Rezaee, S ; Sharif University of Technology
    Springer  2020
    Abstract
    The micromorphology and semiconductor properties of TiO2 thin films growth using different ion beam energies have been finely analyzed using atomic force microscopy (AFM), ultra-violet visible (UV–visible) spectroscopy and stereometric analysis. The AFM measurements and surface stereometric analysis are essential for the accurate characterization of the 3-D surface topographic features and allow the determination of the 3-D surface texture parameters that influence the optical properties of the material. The samples were divided into four groups to discuss the obtained results, according to the ion beam energy applied in the sample preparation. The results obtained from experimental... 

    A comparatiwe study of heat-treated Ag: SiO2nanocomposites synthesized by cosputtering and sol-gel methods

    , Article Surface and Interface Analysis ; Volume 41, Issue 3 , 2009 , Pages 157-163 ; 01422421 (ISSN) Sangpoyr, P ; Babapoyr, A ; Akhavan, O ; Moshfegh, A. Z ; Sharif University of Technology
    2009
    Abstract
    In this work, we compared formation and properties of heat-treated Ag nanoparticles in silica matrix synthesized by RF- reactive magnetron cosputtering and sol-gel methods separately. The sol-gel and sputtered films were annealed at different temperatures in air and in a reduced environment, respectively. The optical UV-visible Spectrophotometry have shown that the absorption peak appears at 456 and 400 nm wavelength indicating formation of silver nanoparticles in SiO2 matrix for both the sol -gel and sputtering methods at 100 and 800 °C, respectively. XPS measurements showed that the metallic Ag0 nanoparticles can be obtained from both the techniques at these temperatures. According to XPS... 

    Photoenhanced degradation of methylene blue on cosputtered M:TiO 2 (M = Au, Ag, Cu) nanocomposite systems: A comparative study

    , Article Journal of Physical Chemistry C ; Volume 114, Issue 33 , 2010 , Pages 13955-13961 ; 19327447 (ISSN) Sangpour, P ; Hashemi, F ; Moshfegh, A. Z ; Sharif University of Technology
    2010
    Abstract
    Titania thin film system containing noble metallic nanoparticles such as Au, Ag, and Cu have been prepared by utilizing radio frequency reactive magnetron cosputtering method. The structural and morphological properties of the thin films were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). Surface chemical composition of the films was determined by X-ray photoelectron spectroscopy (XPS). Optical properties of the TiO 2 annealed films containing Au, Ag, and Cu metallic nanoparticles were investigated by UV-visible spectrophotometry showing surface plasmon resonance of the metals. The photocatalytic activity of all synthesized samples annealed at 600 °C in an Ar +... 

    The effect of Au/Ag ratios on surface composition and optical properties of co-sputtered alloy nanoparticles in Au-Ag:SiO2 thin films

    , Article Journal of Alloys and Compounds ; Volume 486, Issue 1-2 , 2009 , Pages 22-28 ; 09258388 (ISSN) Sangpour, P ; Akhavan, O ; Zaker Moshfegh, A. R ; Sharif University of Technology
    2009
    Abstract
    Gold-silver alloy nanoparticles with various Au concentrations in sputtered SiO2 thin films were synthesized by using RF reactive magnetron co-sputtering and then heat-treated in reducing Ar + H2 atmosphere at different temperatures. The UV-visible absorption spectra of the bimetallic systems confirmed the formation of alloy nanoparticles. The optical absorption of the Au-Ag alloy nanoparticles exhibited only one plasmon resonance absorption peak located at 450 nm between the absorption bands of pure Au and Ag nanoparticles at 400 and 520 nm, respectively, for the thin films annealed at 800 °C. The maximum absorption wavelength of the surface plasmon band showed a red shift with increasing... 

    On the nonlinear dynamics of trolling-mode AFM: analytical solution using multiple time scales method

    , Article Journal of Sound and Vibration ; Volume 423 , 9 June , 2018 , Pages 263-286 ; 0022460X (ISSN) Sajjadi, M. R ; Nejat Pishkenari, H ; Vossoughi, G ; Sharif University of Technology
    Academic Press  2018
    Abstract
    Trolling mode atomic force microscopy (TR-AFM) has resolved many imaging problems by a considerable reduction of the liquid-resonator interaction forces in liquid environments. The present study develops a nonlinear model of the meniscus force exerted to the nanoneedle of TR-AFM and presents an analytical solution to the distributed-parameter model of TR-AFM resonator utilizing multiple time scales (MTS) method. Based on the developed analytical solution, the frequency-response curves of the resonator operation in air and liquid (for different penetration length of the nanoneedle) are obtained. The closed-form analytical solution and the frequency-response curves are validated by the... 

    Finite element modeling of trolling-mode AFM

    , Article Ultramicroscopy ; Volume 189 , 2018 , Pages 24-38 ; 03043991 (ISSN) Sajjadi, M ; Nejat Pishkenari, H ; Vossoughi, G
    Elsevier B.V  2018
    Abstract
    Trolling mode atomic force microscopy (TR-AFM) has overcome many imaging problems in liquid environments by considerably reducing the liquid-resonator interaction forces. The finite element model of the TR-AFM resonator considering the effects of fluid and nanoneedle flexibility is presented in this research, for the first time. The model is verified by ABAQUS software. The effect of installation angle of the microbeam relative to the horizon and the effect of fluid on the system behavior are investigated. Using the finite element model, frequency response curve of the system is obtained and validated around the frequency of the operating mode by the available experimental results, in air... 

    Controlling chaos in tapping mode atomic force microscopes using improved minimum entropy control

    , Article Applied Mathematical Modelling ; Vol. 37, Issue 3 , 2013 , pp. 1599-1606 ; ISSN: 0307904X Sadeghpour, M ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Abstract
    Minimum entropy control technique, an approach for controlling chaos without using the dynamical model of the system, can be improved by being combined with a nature-based optimization technique. In this paper, an ACO-based optimization algorithm is employed to minimize the entropy function of the chaotic system. The feedback gain of a delayed feedback controller is adjusted in the ACO algorithm. The effectiveness of the idea is investigated on suppressing chaos in the tapping-mode atomic force microscope equations. Results show a good performance. The PSO-based version of the minimum entropy control technique is also used to control the chaotic behavior of the AFM, and corresponding results... 

    Non-linear vibration of dagger-shaped atomic force microscope cantilevers by considering the Hertzian contact theory

    , Article Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics ; Volume 225, Issue 2 , 2011 , Pages 77-94 ; 14644193 (ISSN) Sadeghi, A ; Zohoor, H ; Sharif University of Technology
    2011
    Abstract
    The non-linear flexural vibration for a dagger-shaped atomic force microscope cantilever has been investigated using the Timoshenko beam theory. In this article, the normal and tangential tip-sample interaction forces are found from Hertzian contact model and the effects of the geometry, normal and lateral contact stiffness, height of the tip, thickness of the beam, the angle between the cantilever and the sample surface and breadth and height taper ratios on the non-linear frequency to linear frequency ratio have been studied. The differential quadrature method (DQM) is employed to solve the non-linear differential equations of motion. The results show that the softening behaviour is seen... 

    Theoretical description of the flexural vibration of dagger shaped atomic force microscope cantilevers

    , Article Journal of Scanning Probe Microscopy ; Volume 4, Issue 2 , 2009 , Pages 78-90 ; 15577937 (ISSN) Sadeghi, A ; Zohoor, H ; Sharif University of Technology
    Abstract
    The resonant frequency of flexural vibration for a dagger shaped atomic force microscope (AFM) cantilever has been investigated using the Timoshenko beam theory. Generally, three distinct regions are considered for dagger shaped cantilevers, one region with constant cross section and height and two double tapered regions. In this paper, the effects of the contact position, contact stiffness, the height of the tip, thickness of the beam, the height and breadth taper ratios of cantilever and the angle between the cantilever and the sample surface based on Timoshenko beam theory on the non-dimensional frequency and sensitivity to the contact stiffness have been studied. The differential... 

    The effect of substrate surface roughness on ZnO nanostructures growth

    , Article Applied Surface Science ; Volume 257, Issue 8 , February , 2011 , Pages 3291-3297 ; 01694332 (ISSN) Roozbehi, M ; Sangpour, P ; Khademi, A ; Moshfegh, A. Z ; Sharif University of Technology
    2011
    Abstract
    The ZnO nanowires have been synthesized using vapor-liquid-solid (VLS) process on Au catalyst thin film deposited on different substrates including Si(1 0 0), epi-Si(1 0 0), quartz and alumina. The influence of surface roughness of different substrates and two different environments (Ar + H2 and N2) on formation of ZnO nanostructures was investigated. According to AFM observations, the degree of surface roughness of the different substrates is an important factor to form Au islands for growing ZnO nanostructures (nanowires and nanobelts) with different diameters and lengths. Si substrate (without epi-taxy layer) was found that is the best substrate among Si (with epi-taxy layer), alumina and... 

    Effect of annealing on the micromorphology and corrosion properties of Ti/SS thin films

    , Article Superlattices and Microstructures ; Volume 146 , 2020 Rezaee, S ; Arman, A ; Jurečka, S ; Korpi, A. G ; Mwema, F ; Luna, C ; Sobola, D ; Kulesza, S ; Shakoury, R ; Bramowicz, M ; Ahmadpourian, A ; Sharif University of Technology
    Academic Press  2020
    Abstract
    Ti and TiN thin films were deposited by means of electron beam evaporation on stainless steel substrates, and subsequently annealed at different temperatures (650, 750 and 850 °C) in a nitrogen atmosphere. The surface morphology of the films studied by atomic force microscopy (AFM), was found to exhibit specific multifractal properties depending on the annealing temperature. It turned out that the width of the multifractal singularity spectra, f(α), decreased as the annealing temperature increased up to 750 °C, but it increased when the temperature was kept at 750 and 850 °C accompanied by the rapid development of the surface objects. The generalized fractal dimension followed a similar...