Loading...
Search for: afm
0.014 seconds
Total 111 records

    Morphology, optical and electrical properties of Cu-Ni nanoparticles in a-C:H prepared by co-deposition of RF-sputtering and RF-PECVD

    , Article Applied Surface Science ; Volume 258, Issue 2 , 2011 , Pages 727-731 ; 01694332 (ISSN) Ghodselahi, T ; Vesaghi, M. A ; Gelali, A ; Zahrabi, H ; Solaymani, S ; Sharif University of Technology
    Abstract
    We report optical and electrical properties of Cu-Ni nanoparticles in hydrogenated amorphous carbon (Cu-Ni NPs @ a-C:H) with different surface morphology. Ni NPs with layer thicknesses of 5, 10 and 15 nm over Cu NPs @ a-C:H were prepared by co-deposition of RF-sputtering and RF-Plasma Enhanced Chemical Vapor Deposition (RF-PECVD) from acetylene gas and Cu and Ni targets. A nonmetal-metal transition was observed as the thickness of Ni over layer increases. The surface morphology of the sample was described by a two dimensional (2D) Gaussian self-affine fractal, except the sample with 10 nm thickness of Ni over layer, which is in the nonmetal-metal transition region. X-ray diffraction profile... 

    Optical and electrical properties of the copper-carbon nanocomposites

    , Article Nanophotonics II, Strasbourg, 7 April 2008 through 9 April 2008 ; Volume 6988 , 2008 ; 0277786X (ISSN); 9780819471864 (ISBN) Ghodselahi, T ; Vesaghi, M. A ; Shafiekhani, A ; Ahmadi, M ; Sharif University of Technology
    2008
    Abstract
    We prepared copper-carbon nanocomposite films by co-deposition of RF-Sputtering and RF-PECVD methods at room temperature. These films contain different copper concentration and different size of copper nanoparticles. The copper content of these films was obtained from Rutherford Back Scattering (RBS) analyze. We studied electrical resistivity of samples versus copper content. A metal-nonmetal transition was observed by decreasing of copper content in these films. The electrical conductivity of dielectric and metallic samples was explained by tunneling and percolation models respectively. In the percolation threshold conduction results from two mechanisms: percolation and tunneling. In the... 

    Frequency response behavior of microcantilevers in tapping-mode Atomic Force Microscopy

    , Article Proceedings of the ASME Design Engineering Technical Conference, 15 August 2010 through 18 August 2010, Montreal, QC ; Volume 4 , 2010 , Pages 469-476 ; 9780791844120 (ISBN) Delnavaz, A ; Mahmoodi, S. N ; Jalili, N ; Zohoor, H ; Sharif University of Technology
    2010
    Abstract
    Distributed-parameters vibration model of microcantilevers in tapping-mode Atomic Force Microscopy (AFM) is developed and is shown to be highly nonlinear. The question of why these nonlinearities are important and how they influence the predicted frequency response behavior of the cantilevers is addressed by comparing the results of developed model with a simple lumpedparameters model that has been extensively studied in the literature so far. The interaction forces between the microcantilever tip and the sample is supposed to be the same in both models and consist of attractive and repulsive interaction force regimes. In addition, experimental measurements are provided for a typical... 

    Linear and nonlinear approaches towards amplitude modulation atomic force microscopy

    , Article Current Applied Physics ; Volume 10, Issue 6 , 2010 , Pages 1416-1421 ; 15671739 (ISSN) Delnavaz, A ; Mahmoodi, S. N ; Jalili, N ; Zohoor, H ; Sharif University of Technology
    2010
    Abstract
    Frequency response behavior of microcantilever is analytically and experimentally investigated in amplitude modulation Atomic Force Microscopy (AFM). AFM microcantilever probe is modeled as a continuous beam, and tip-sample interaction force is considered to include both attractive and repulsive force regimes. The developed model is compared with the linear lumped-parameters model that has been extensively used in the literature so far. Experimental measurements are also provided for the frequency response of a typical microcantilever-sample system to demonstrate the advantages of the developed model over the linear formulation. The results indicate that the nonlinear continuous model is... 

    Analytical and experimental frequency response analysis of microcantilevers subject to tip-sample interaction

    , Article Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009, 30 August 2009 through 2 September 2009 ; Volume 6 , September , 2010 , Pages 575-581 ; 9780791849033 (ISBN) Delnavaz, A ; Mahmoodi, S. N ; Jalili, N ; Zohoor, H ; Sharif University of Technology
    Abstract
    Improvement of microcantilever-based sensors and actuators chiefly depends on how comprehensively they are modeled and precisely formulated. Atomic Force Microscopy (AFM) is the most widespread application of microcantilever beam as a sensor, which is usually influenced by the tip-sample interaction force. For this, vibration of AFM microcantilever probe is analyzed in this paper, along with analytical, numerical and experimental investigation of the influence of the sample interaction force on the microcantilever vibration. Nonlinear integro-partial equation of microcantilever vibration subject to the tip-sample interaction is then derived and numerically simulated. Moreover, multiple time... 

    Nonlinear vibrations of microcantilevers subjected to tip-sample interactions: Theory and experiment

    , Article Journal of Applied Physics ; Volume 106, Issue 11 , 2009 ; 00218979 (ISSN) Delnavaz, A ; Mahmoodi, S. N ; Jalili, N ; Ahadian, M. M ; Zohoor, H ; Sharif University of Technology
    Abstract
    Improvement of microcantilever-based sensors and actuators chiefly depends on their modeling accuracy. Atomic force microscopy (AFM) is the most widespread application of microcantilever beam as a sensor, which is usually influenced by the tip-sample interaction force. Along this line of reasoning, vibration of AFM microcantilever probe is analyzed in this paper, along with analytical and experimental investigation of the influence of the sample interaction force on the microcantilever vibration. Nonlinear integropartial equation of microcantilever vibration subject to the tip-sample interaction is then derived and multiple time scales method is utilized to estimate the tip amplitude while... 

    Analytical and experimental frequency response analysis of microcantilevers subject to tip-sample interaction

    , Article Proceedings of the ASME Design Engineering Technical Conference, 30 August 2009 through 2 September 2009 ; Volume 6 , 2009 , Pages 575-581 ; 9780791849033 (ISBN) Delnavaz, A ; Mahmoodi, S. N ; Jalili, N ; Zohoor, H ; Sharif University of Technology
    Abstract
    Improvement of microcantilever-based sensors and actuators chiefly depends on how comprehensively they are modeled and precisely formulated. Atomic Force Microscopy (AFM) is the most widespread application of microcantilever beam as a sensor, which is usually influenced by the tip-sample interaction force. For this, vibration of AFM microcantilever probe is analyzed in this paper, along with analytical, numerical and experimental investigation of the influence of the sample interaction force on the microcantilever vibration. Nonlinear integro-partial equation of microcantilever vibration subject to the tip-sample interaction is then derived and numerically simulated. Moreover, multiple time... 

    Vibration control of AFM tip for nano-manipulation using combined sliding mode techniques

    , Article 2007 7th IEEE International Conference on Nanotechnology - IEEE-NANO 2007, Hong Kong, 2 August 2007 through 5 August 2007 ; 2007 , Pages 106-111 ; 1424406080 (ISBN); 9781424406081 (ISBN) Delnavaz, A ; Jalili, N ; Zohoor, H ; Sharif University of Technology
    2007
    Abstract
    Atomic force microscope (AFM) can be used as nanorobotics manipulation tool for nano particle positioning, pushing, indenting, cutting and etc. control the vibration behavior of AFM and make the micro-cantilever tip track specified trajectory is very crucial to appropriately manipulate particles in nano-scales. The novel combined sliding mode approach has been investigated in this paper to obtain robust nonlinear control scheme for nanomanipulation. First (classical) and second order (SOSM) sliding mode techniques have been developed and applied to nonlinear dynamical and uncertain model of AFM cantilever beam to track the desired trajectories. The simulation results show chattering in... 

    Surface roughness analysis of hydrophilic SiO2/TiO 2/glass nano bilayers by the level crossing approach

    , Article Physica A: Statistical Mechanics and its Applications ; Volume 392, Issue 9 , 2013 , Pages 2175-2181 ; 03784371 (ISSN) Daryaei, E ; Reza Rahimi Tabar, M ; Moshfegh, A. Z ; Sharif University of Technology
    2013
    Abstract
    The effect of etching time on the statistical properties of hydrophilic surfaces of SiO2/TiO2/glass nano bilayers has been studied using atomic force microscopy (AFM) and a stochastic approach based on a level crossing analysis. We have created rough surfaces of the hydrophilic SiO 2/TiO2 nano bilayer system by using 26% potassium hydroxide (KOH) solution. Measuring the average apparent contact angle allowed us to assess the degree of hydrophilicity, and the optimum condition was determined to be 10 min etching time. A level crossing analysis based on AFM images provided deeper insight into the microscopic details of the surface topography. With different etching times, it has been shown... 

    Modeling of eccentric nanoneedle in trolling-mode atomic force microscope

    , Article Microscopy Research and Technique ; 2020 Chahari, M ; Sajjadi, M ; Sharif University of Technology
    Wiley-Liss Inc  2020
    Abstract
    Limitations on installation of a standard TR-AFM nanoneedle can have unpredictable effects on dynamics of system. Therefore, it is crucial to pay close attention to the position and geometry of mounted nanoneedle when deriving the mathematical model. During TR-AFM fabrication process, the nanoneedle may not always deposit precisely at the middle of AFM tip, which would result in coupled bending-torsion modes in the dynamical operation of system. In this paper, we investigate the effect of eccentric nanoneedle in dynamic response of TR-AFM. To address this issue, a continuous mathematical model is developed. This model accounts for eccentric nanoneedle which can address the couplings in... 

    Modeling of eccentric nanoneedle in trolling-mode atomic force microscope

    , Article Microscopy Research and Technique ; Volume 84, Issue 4 , 2021 , Pages 639-655 ; 1059910X (ISSN) Chahari, M ; Sajjadi, M ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Limitations on installation of a standard TR-AFM nanoneedle can have unpredictable effects on dynamics of system. Therefore, it is crucial to pay close attention to the position and geometry of mounted nanoneedle when deriving the mathematical model. During TR-AFM fabrication process, the nanoneedle may not always deposit precisely at the middle of AFM tip, which would result in coupled bending-torsion modes in the dynamical operation of system. In this paper, we investigate the effect of eccentric nanoneedle in dynamic response of TR-AFM. To address this issue, a continuous mathematical model is developed. This model accounts for eccentric nanoneedle which can address the couplings in... 

    On the photocatalytic activity of the sulfur doped titania nano-porous films derived via micro-arc oxidation

    , Article Applied Catalysis A: General ; Volume 389, Issue 1-2 , 2010 , Pages 60-67 ; 0926860X (ISSN) Bayati, M. R ; Moshfegh, A. Z ; Golestani Fard, F ; Sharif University of Technology
    2010
    Abstract
    Sulfur doped TiO2 layers containing nano/micro-sized pores were synthesized by micro-arc oxidation process. Effect of the applied voltage and the electrolyte composition on physical and chemical properties of the layers was investigated using SEM, AFM, XRD, XPS, and EDS techniques. A UV-vis spectrophotometer was also used to study optical properties of the layers. It was found that the doped layers were porous with a pore size of 40-170 nm. They consisted of anatase and rutile phases with varying fraction depending on the applied voltage and electrolyte concentration. Our XPS investigations revealed the existence of sulfur in the forms of S4+ and S6+ states which substituted Ti4+ in the... 

    (WO3)x-(TiO2)1-x nano-structured porous catalysts grown by micro-arc oxidation method: Characterization and formation mechanism

    , Article Materials Chemistry and Physics ; Volume 124, Issue 1 , 2010 , Pages 203-207 ; 02540584 (ISSN) Bayati, M. R ; Moshfegh, A. Z ; Golestani Fard, F ; Molaei, R ; Sharif University of Technology
    2010
    Abstract
    Very recently, we fabricated (WO3)x-(TiO 2)1-x layers via micro-arc oxidation process under different applied voltages. Morphological and topographical studies, accomplished by SEM and AFM techniques, revealed that the pores size as well as the surface roughness increased with the voltage. Phase structure and chemical composition of the layers were also investigated by XRD and XPS and the results showed the grown layers consisted of titanium and tungsten oxides. It was found that WO3 dispersed in the TiO2 matrix and also doped into the TiO2 lattice. In addition, optical properties of the synthesized layers were studied employing a UV-vis spectrophotometer. Band gap energy of the layers was... 

    How photocatalytic activity of the MAO-grown TiO2 nano/micro-porous films is influenced by growth parameters?

    , Article Applied Surface Science ; Volume 256, Issue 13 , 2010 , Pages 4253-4259 ; 01694332 (ISSN) Bayati, M. R ; Golestani Fard, F ; Moshfegh, A. Z ; Sharif University of Technology
    2010
    Abstract
    Pure titania porous layers consisted of anatase and rutile phases, chemically and structurally suitable for catalytic applications, were grown via micro-arc oxidation (MAO). The effect of applied voltage, process time, and electrolyte concentration on surface structure, chemical composition, and especially photocatalytic activity of the layers was investigated. SEM and AFM studies revealed that pore size and surface roughness of the layers increased with the applied voltage, and the electrolyte concentration. Moreover, the photocatalytic performance of the layers synthesized at medium applied voltages was significantly higher than that of the layers produced at other voltages. About 90% of... 

    Novel nano-porous hydrogel as a carrier matrix for oral delivery of tetracycline hydrochloride

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 392, Issue 1 , December , 2011 , Pages 16-24 ; 09277757 (ISSN) Bardajee, G. R ; Pourjavadi, A ; Soleyman, R ; Sharif University of Technology
    Abstract
    A novel nano-porous hydrogel (NPH) was synthesized via graft copolymerization of sodium acrylate (Na-AA) and acrylamide (AAm) onto salep backbones and its application as a carrier matrix for oral delivery of tetracycline hydrochloride (TH) was investigated. The Taguchi method as a strong experimental design tool was used for synthesis optimization. The swelling behavior of optimum hydrogel was measured in various media. The hydrogel formation was confirmed by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetrical analysis (TGA). The study of the surface morphology of the hydrogels using SEM and AFM showed a nanoporous (average pore size: 180. nm) structure for the sample... 

    Preparation of uniform TiO2 nanostructure film on 316L stainless steel by sol-gel dip coating

    , Article Applied Surface Science ; Volume 255, Issue 20 , 2009 , Pages 8328-8333 ; 01694332 (ISSN) Barati, N ; Sani, M. A. F ; Ghasemi, H ; Sadeghian, Z ; Mirhoseini, S. M. M ; Sharif University of Technology
    2009
    Abstract
    Sol was prepared by the mixing of tetra-η-butyle titanat, ethyl aceto acetate, and ethanol in an optimized condition. Polished 316L specimens were coated with the sol by dip-coating method. The influences of drying condition, withdrawal speed, calcination temperature, addition of dispersant, and pH of sol on TiO2 nanostructure coating were investigated. Choosing of alcohol as drying atmosphere hindered the crack formation. The relation between coating thickness and withdrawal speed was evaluated. The optimum temperature to create a uniform distribution of nanoparticles of anatase was derived as 400 °C. Average roughness of coating was found about 10.61 nm by AFM analysis. Dispersant addition... 

    Development of nanostructured porous TiO2 thick film with uniform spherical particles by a new polymeric gel process for dye-sensitized solar cell applications

    , Article Electrochimica Acta ; Volume 89 , February , 2013 , Pages 90-97 ; 00134686 (ISSN) Bakhshayesh, A. M ; Mohammadi, M. R ; Sharif University of Technology
    2013
    Abstract
    A novel simple synthetic procedure for fabrication of high surface area nanostructured TiO2 electrode with uniform particles for photovoltaic application is reported. Modifying the TiO2 particulate sol by pH adjustment together with employment of a polymeric agent, so-called polymeric gel process, was developed. The polymeric gel process was used to deposit nanostructured thick electrode by dip coating incorporated in dye-sensitized solar cells (DSSCs). X-ray diffraction (XRD) analysis revealed that deposited film was composed of primary nanoparticles with average crystallite size in the range 21-39 nm. Field emission scanning electron microscope (FE-SEM) images showed that deposited film... 

    Dynamic modeling and sensitivity analysis of atomic force microscope pushing force in nanoparticle manipulation on a rough substrate [electronic resource]

    , Article Journal of Advanced Science, Engineering and Medicine ; 2013, Vol. 5, pp. 1-10 Babahosseini, H. (Hesam) ; Mahboobi, Seyed Hanif ; Meghdari, Ali ; Sharif University of Technology
    Abstract
    An Atomic Force Microscope (AFM) is a capable tool to manipulate nanoparticles by exerting pushing force on the nanoparticles located on the substrate. In reality, the substrate cannot be considered as a smooth surface particularly at the nanoscale. Hence, the particle may encounter a step on the substrate during a manipulation. In this study, dynamics of the nanoparticle on a stepped substrate and critical pushing force in the manipulation are investigated. There are two possible dynamic modes that may happen in the manipulation on the stepped substrate. In one mode, the nanoparticle may slide on the step edge and then climb up to the step which is a desired mode. Another possible mode is... 

    Optimal sliding mode control of AFM tip vibration and position during manipulation of a nanoparticle

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings ; Vol. 12, Issue. PART A , 2010 , pp. 205-214 ; ISBN: 9780791843857 Babahosseini, H ; Khorsand, M ; Meghdari, A ; Alasty, A ; Sharif University of Technology
    Abstract
    This research regards to a two-dimensional lateral pushing nanomanipulation using Atomic Force Microscope (AFM). Yet a reliable control of the AFM tip position during the AFM-based manipulation process is a chief issue since the tip can jump over the target nanoparticle and then the process can fail. However, a detailed Modeling and understanding of the interaction forces on the AFM tip is important for prosperous manipulation control and a nanometer resolution tip positioning. In the proposed model, Lund-Grenoble (LuGre) dynamic friction model is used as friction force on the contact surface between the nanoparticle and the substrate. This model leads to a stick-slip behavior of the... 

    Optimal sliding mode control for Atomic Force Microscope tip positioning during nano-manipulation process

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 2285-2296 ; 10263098 (ISSN) Babahosseini, H ; Mahboobi, S. H ; Vakilzadeh, M. K ; Alasty, A ; Meghdari, A ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    This research presents two-dimensional controlled pushing-based nanomanipulation using an Atomic Force Microscope (AFM). A reliable control of the AFM tip position is crucial to AFM-based manipulation since the tip can jump over the target nanoparticle causing the process to fail. However, detailed modeling and an understanding of the interaction forces on the AFM tip have a central role in this process. In the proposed model, the Lund-Grenoble (LuGre) method is used to model the dynamic friction force between the nanoparticle and the substrate. This model leads to the stick-slip behavior of the nanoparticle, which is in agreement with the experimental behavior at nanoscale. Derjaguin...