Loading...
Search for: aged
0.013 seconds
Total 386 records

    The Natural Aging Modeling of 2024 AL alloy after Multi-directional Forging

    , M.Sc. Thesis Sharif University of Technology Nouri, Sasan (Author) ; Kazeminezhad, Mohsen (Supervisor)
    Abstract
    Metallurgical phenomena modeling help the researchers to understand the influence and contribution of different factors on the alloys properties. One of the most interesting phenomenon is the aging process occuring in age-hardenable alloys like 2xxx aluminium series. A factor which has high impact on aging and there are not proper models for evaluating that, is the contribution of plastic deformation. This factor has contribution not only on the dynamic precipitation (during deformation) but also on the natural aging after plastic deformation. So in this research a model containing the role of plastic deformation on dynamic precipitation and the contribution of dynamic precipitation on total... 

    An Investigation into the Kinetics of Quench Aging in an Mg-Zn Alloy

    , M.Sc. Thesis Sharif University of Technology Janbozorgi, Mohammad (Author) ; Karimi Taheri, Ali (Supervisor)
    Abstract
    Special features of magnesium such as low density, perfect bio-compatibility in the human body, and close elastic modulus to the human bone have increased the use of Mg alloys in the bio-medical applications. Nevertheless, low mechanical properties and poor corrosion resistance of Mg alloys have limited their bio-medical applications. The addition of alloying elements together with the use of precipitation hardening and plastic deformation are the most effective methods to improve the mechanical properties and increase the corrosion resistance of Mg alloys. Thus, the present research with the aim of improving the mechanical properties of an Mg-Zn alloy by Ca and Gd additions together with... 

    Investigation of Multistage Static Strain Aging of Low Carbon Steel using Rolling Pre-strain

    , M.Sc. Thesis Sharif University of Technology Rizehvandy, Siroos (Author) ; karimi taheri, Ali (Supervisor)
    Abstract
    In the present study, multistage strain aging phenomenon using rolling pre-strain and solution treatment at 680℃ for 40 min was used to study the effect of temperature and inter-pass time (IPT) on the static strain aging behavior of a low carbon steel sheet. The increase in hardness and strength caused by work hardening and the aging at each pass were separately calculated.The samples were rolled and subjected to aging process both in a single pass of 20% rolling reduction in thickness and in four stages consisted of 5% reduction at each stage. The mechanical properties of the samples aged at different time and temperature, were compared. In order to evaluate the effects of pre-strain type,... 

    An Investigation into the Al-6wt%Mg work Hardening Behavior after Cold Rolling

    , M.Sc. Thesis Sharif University of Technology Abdollahzadeh, Amin (Author) ; Kazeminezhad, Mohsen (Supervisor)
    Abstract
    Al-6wt%Mg alloy has been enormously exploited in aerospace industry. Since for production of this alloy in the form of sheets of different thickness, the cold rolling process is used, thus to understand the final mechanical properties of the rolled alloy products, their work hardening should be examined. Also, one of the important phenomena that occurs in cold state of the alloy is dynamic strain-aging (DSA), which can cause serrations in realistic stress-strain curve. The aforementioned issue is discussed in the current study. Therefore, the work-hardening values for the mentioned alloy during and after rolling is determined, and then compared with the experimental studies. The results of... 

    An Investigation Into the Aging Kinetics of a Heat Resistant Stainless Steel

    , M.Sc. Thesis Sharif University of Technology Jalilvand, Sepideh (Author) ; Karimi Taheri, Ali (Supervisor)
    Abstract
    The austenitic heat resistant stainless steels have been widely used in petrochemical industry as furnace tubes which are exposed to extremely high temperatures. In this study, the quench aging process of a HP modified heat resistant stainless steel is assessed and the kinetics of aging is evaluated by the JMAK model. The microstructure of steel in as cast and aged conditions was characterized by optical microscope and scanning electron microscope equipped with EDS. The effects of aging time and temperature on the microstructure, tensile propertices, shear strength, hardness, and ductility of the aged steel were determinded. The results of tensile and shear punch tests show a linear... 

    An Investigation into the Effect Of Severe Plastic Deformation by Equal Channel Angular Extrusion (Ecae) Process on Mechanical and Microstructural Properties of a Mg-Zn Alloy

    , M.Sc. Thesis Sharif University of Technology Shaeri, Morteza (Author) ; Karimi Taheri, Ali (Supervisor)
    Abstract
    The specific properties of some of magnesium alloys have caused these alloys to be used in medical and industrial applications. Adding new elements and applying severe plastic deformation to these alloys have been considered as a clue for improving their mechanical properties. The aim of this project is to improve the mechanical properties of a magnesium alloy by using new alloying elements and applying the ECAP process.
    In this project, a new magnesium alloy by composition of Mg-1.78Zn-0.72Si-0.41Ca was cast. After casting, solution treating and annealing of the alloy were studied. Then, the effect of ECAP process on microstructure and mechanical properties of the annealed and solution... 

    Investigation on Thermo-mechanical Behavior of AA5086 During Warm and Hot Rolling Operation

    , M.Sc. Thesis Sharif University of Technology Asgharzadeh, Amir (Author) ; Serajzadeh, Siamak (Supervisor)
    Abstract
    A mathematical model has been proposed to estimate the deformation pattern and the required power in cold plate rolling using the stream function method and upper bound theorem. In the first place admissible velocity distributions as well as the geometry of deformation zone were derived from the proposed stream functions. Then, the optimum velocity field was obtained by minimization of the power function computed based on the upper bound theorem. Then a steady state heat transfer equation has been solved in whole model using finite element method. In order to verify the predictions, rolling experiments on aluminum plates were conducted and also, a finite element analysis performed employing... 

    Modeling the Microstructure Evolution and Mechanical Properties of Al-Mg-Si alloys During Thermomechanical Treatment

    , Ph.D. Dissertation Sharif University of Technology Anjabin, Nozar (Author) ; Karimi Taheri, Ali (Supervisor)
    Abstract
    The Al-Mg-Si alloys are an important group of industrial materials used extensively in the automotive and aerospace industry, due to their high strength to weight ratio, good corrosion resistance and the recycle ability. In order to achieve a combination of optimized microstructure and properties during the production processes, the study of deformation behavior and heat treatment of these alloys is necessary. Therefore, the prediction of microstructural evolution and mechanical properties as a function of alloy chemical composition and thermomechanical treatment is important for these alloys, from both the scientific and industrial aspects. In the present research, the flow behavior of this... 

    Thermo-mechanical Study on TIG Welding of AA2024 Alloy and Subsequent Microstructural Events

    , M.Sc. Thesis Sharif University of Technology Sarmast, Ardeshir (Author) ; Serajzadeh, Siamak (Supervisor) ; Kokabi, Amir Hossein (Supervisor)
    Abstract
    In this study, temperature and Thermo-mechanical stress Distributions during and after TIG welding operations of AA2024 have been investigated by means of numerical simulation and experimental observations. Different geometries and initial microstructures, i.e. artificially and naturally aged alloys, have been selected. The model can determine the effect of welding parameters as well as mechanical fixtures on temperature and stress fields developed within metal being welded. Furthermore the subsequent aging behaviour of welded alloy (up to 70 days) has been evaluated employing hardness measurement and tensile testing. In addition, microstructural evolutions have been made utilising Scanning... 

    Theoretical and Experimental Investigation of Warm Rolling of Al Alloy 2017

    , M.Sc. Thesis Sharif University of Technology Khalili, Leila (Author) ; Serajzadeh, Siamak (Supervisor)
    Abstract
    A mathematical model was developed to assess thermomechanical behavior of work rolls during warm rolling processes of AA2017. A combined finite element analysis-slab method was first developed to determine thermal and mechanical responses of the strip being rolled under steady-state conditions; Then, the calculated roll pressure and temperature field were utilized as the governing boundary conditions for the thermomechanical problem of the work roll. Finally, the thermomechanical stresses within the work rolls were predicted by a thermoelastic finite element approach. The results indicate that, in warm strip rolling, thermal and mechanical stresses developed in the work rolls are comparable.... 

    Development of Mechanical Properties of 420 AISI Martensitic Stainless Steel Using the Age Hardening Nano Precipitates and ANN Analysis

    , M.Sc. Thesis Sharif University of Technology Azarnoush, Mohammad (Author) ; Karimi Taheri, Ali (Supervisor)
    Abstract
    The Austenitization, influence of ageing condition and the prediction kinetics of AISI 420 martensitic stainless steel were studied in this paper. The Austenitizing temperature of 9200C, 9500C and 10200C were achieved. The specimens were heated for 15, 30 and 60 minutes then quenched in 250C Oil. The cooled samples were tempered at 2000C for 1 hour. The maximum tensile strength obtained at 10200C and 60 minutes were about 1800 MPa. The effect and ageing temperature and time on the strengthening behavior of this steel was modeled and analyzed by shear punch test and means of artificial neural networks (ANNs). Johnson-Mehl-Avrami-Kolmogorov (JMAK) analyses were applied to characterize the... 

    Processing of Nanostructured Composite from Al1050 and Al2024 Via Aaccumulative Roll Bonding (ARB) and Study of Heattreatment Effects on its Microstructure and Mechanical Properties

    , M.Sc. Thesis Sharif University of Technology Sadeghi, Aida (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    In this study nanostructured composite from Al1050 and Al2024 were manufactured via accumulative roll bonding (ARB). Process was conducted in two different ways. In one approach the Al2024 sheets were annealed and in the other they were solution treated (ST). The sheets were degreased by acetone and wire-brushed, and then one Al2024 was placed between two sheets of Al1050, so three pieces of sheets were stacked to be 3 mm in thickness. The stacked sheets were rollbonded to produce the primary composite sandwich with thickness of 1 mm. Then, this sandwich was cut in the half and the two halves were degreased and wire-brushed and stacked to be 2 mm in thickness. Roll-bonding was conducted... 

    , M.Sc. Thesis Sharif University of Technology Ourang, Mohammad Reza (Author) ; Ekrami, Ali Akbar (Supervisor) ; Seyed Reihani, Morteza (Supervisor)
    Abstract
    In this research, wear behaviors of 6061Al and 6061Al-20 vol% SiC composite -prepared by powder metallurgy method- were investigated in the temperature range 25- 200°C. Dry sliding wear tests were conducted at a constant sliding velocity of 0.34 m/s, an applied load of 20 N and 50N, and a sliding distance of 2450m using a pin-on-disc machine test. Some of the wear tests were carried out with artificially aged specimens in order to determine the aging effects on wear rate of composite. Worn surfaces and wear debris were also examined by using SEM and EDS techniques. Also for determining the effect of age hardening treatment on wear behavior of composite, specimens were solution treated at... 

    Development of Nanostructural Al-Mg-Si Alloys using ECAE and Ageing Processes

    , Ph.D. Dissertation Sharif University of Technology Vaseghi, Majid (Author) ; Karimi Taheri, Ali (Supervisor)
    Abstract
    The manufacture of ultra high strength materials has always been a target for aerospace and transportation industries. Currently, the limitation of energy resources even makes this goal more serious. Nowadays, more than 50% of total extrusion products are made from Al alloys and around 90% of them are the 6000 series alloys. Therefore, regarding to high strength, low weight, and hardening aluminum AA6000 alloys capabilities can play a major role in fulfilling this task. Over the last decade, a number of techniques collectively referred to as severe plastic deformation (SPD), have emerged as a promising approach for the production of bulk ultrafine-grained (UFG) nano-structured materials.... 

    Investigation of the Effect of Temperature on Wear Behavior of 2024Al and 2024Al-20vol.%SiCp Composite

    , M.Sc. Thesis Sharif University of Technology Mousavi Abarghouie, Mohammad Reza (Author) ; Seyyed Reihani, Morteza (Supervisor)
    Abstract
    In this research, friction and wear behaviors of 2024 Al and 2024 Al-20 vol.% SiC composite -prepared by powder metallurgy method- were investigated in the temperature range 20- 250°C. Dry sliding wear tests were conducted at a constant sliding velocity of 0.5 m/s, an applied load of 20 N, and a sliding distance of 2500m using a pin-on-disc apparatus. Some of the wear tests were carried out with artificially aged specimens in order to determine the aging effects. Worn surfaces and wear debris were also examined by using SEM, EDS and XRD techniques. All specimens showed a transition from mild to severe wear above a critical temperature. In the mild wear regime, the wear rate and the friction... 

    Investigation of Mechanical Milling Effects on Al-Cu and Al-CuO Powder Mixture Morphological and Structural Characteristic and Mechanical Properties Changes Resultant from Age Hardening

    , M.Sc. Thesis Sharif University of Technology Haghighatzadeh, Mehdi (Author) ; Simchi, Abdolreza (Supervisor)
    Abstract
    In the present work, nanocrystalline Al-4wt%Cu alloy reinforced with nanometric Al2O3 particles was synthesized by in-situ reactive milling of Al and CuO powder mixture and hot extrusion. The effect of nanometric Al2O3 particles on the aging behavior and mechanical properties of this alloy was investigated. During mechanical milling, copper oxide were reduced and dissolved in the aluminum lattice. consequently, Al(Cu) solid solution matrix was produced. Also, nanometric Al2O3 particles were also distributed in the matrix uniformly. The powder blend was then pressed in an Al can at 100 MPa pressure and subsequently extruded at 450 0C at the extrusion ratio of 16:1. The density of the... 

    Design of an Observer for Lithium-ion Battery State of Charge

    , M.Sc. Thesis Sharif University of Technology Fereydooni Sefid Dashti, Alireza (Author) ; Pishvaie, Mahmoud Reza (Supervisor) ; Vafa, Ehsan (Supervisor)
    Abstract
    To ensure stable and optimal operation of lithium-ion batteries (LIBs), it is necessary to use a management system for online monitoring and accurate estimation of battery State of Charge (SOC). Due to LIBs' complex dynamics and effective factors such as temperature and side reactions, battery SOC estimation has become one of the greatest challenges for experts in the field. In this research, an adaptive sliding mode observer has been designed and evaluated for a cylindrical lithium manganese oxide battery with a capacity of 1258 mAh. At first, rigorous simulation of lithium-ion battery has been performed by utilizing the P2D electrochemical as well as thermal and aging model to be the main... 

    Experimental Study of the Aging Effect on the Oxidation Catalyst Performance as an Emission Control Device for 4-stroke Gasoline Carburetor Motorcycles

    , M.Sc. Thesis Sharif University of Technology Taheri, Arman (Author) ; Hamzehlouyan, Tayebeh (Supervisor)
    Abstract
    There are more than one million motorcycles in the city of Tehran that are responsible for significant amounts of various air pollutants emissions such as carbon monoxide and hydrocarbons. Oxidation catalysis, as the exhaust aftertreatment system of motorcycles, can reduce the emission of CO and hydrocarbon pollutants. The efficiency of these catalysts under typical operating conditions of vehicle exhaust gas has been studied in the literature. However, due to the specific features of motorcycles exhaust gas in Tehran, such as ultra-rich combustion, low air to fuel ratio (lambdas as low as 0.6-0.7), different exhaust gas composition and significant amount of lubricating oil consumption,... 

    Study of Physical and Chemical Properties of Suitable Rubber Compound in Acidic Media with High Temperatures and High Pressure

    , M.Sc. Thesis Sharif University of Technology Mahmoudi, Saeed (Author) ; Musavi, Abbas (Supervisor) ; Shojaei, Akbar (Supervisor)
    Abstract
    In This thesis the properties of a compatible rubber compound for a specific chemical environment (acidic media) with high temperature and high pressure (HTHP) is studied. After primary studies, six formulations are designed on the basis of Nitrile rubber. after tensile and hardness tests at ambient temperature and 120 °C, samples putted in aging reservoir for aging tests. After that, tensile and hardness tests were performed again. Finally, by analyzing the results, the best formulation have chosen. Test results show that the NBR / PVC compound with higher filler load, has the best chemical resistance  

    An Investigation on Aging of Rubber Compounds Against Acidic Gases

    , M.Sc. Thesis Sharif University of Technology Aminizadeh, Pooria (Author) ; Mousavi, Abbas (Supervisor) ; Shojaei, Akbar (Supervisor)
    Abstract
    Aging of rubber compounds at high temperature and pressure acidic gas is a challenge for using them for a long time. Therefore, in this thesis aging of NBR/PVC compounds against H¬2S and CO2 has been investigated. The main method have been used is Full Factorial Design of Experiment. The parameters have been examined are content of zinc oxide, plasticizer RPO ASTM 290 and antioxidant 4010 NA. The content have been set in tow levels and effect of each have investigated in ambient and 120 degree of centigrad temperature. The results show that the effect of antioxidant 4010 NA on aging of compounds is negative and zinc oxide and plasticizer RPO ASTM 290 are positive