Loading...
Search for: alginate
0.011 seconds
Total 113 records

    Preparation of Antibacterial Silver, PVA, Na Alginate Nanocomposites Via Gamma Irradiation

    , M.Sc. Thesis Sharif University of Technology Eghbalifam, Naimeh (Author) ; Frounchi, Masoud (Supervisor) ; Dadbin, Susan (Supervisor)
    Abstract
    In this research, polyvinyl alcohol/ sodium alginate/ nano silver nanocomposite films were fabricated by solution casting method via gamma irradiation. The purpose of using gamma radiation was reduction of silver nitrate and synthesis of silver nanoparticles. Formation of silver nanoparticles was proved by ultra violet- visible spectroscopy (UV-Vis) and x-ray diffraction (XRD) tests. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) were used to study morphology, size and distribution of silver nanoparticles. Chemical structure, thermal behavior and mechanical properties of nanocomposites were characterized by fourier transform infrared spectroscopy (FTIR), differential... 

    HAP/Agar Nanocarriers for Bone Anti-infection Drug

    , M.Sc. Thesis Sharif University of Technology Ghazagh, Parisa (Author) ; Frounchi, Masood (Supervisor)
    Abstract
    Successful treatment of bone infections is a major orthopedic challenge due to the physiological and anatomical features of bone. In this project, we prepared a drug delivery system with injectable and biodegradable polysaccharide agar containing alginate, polyvinyl alcohol and hydroxyapatite nanocarriers composite microspheres. Alginate and polyvinyl alcohol composite microspheres are crosslinked by calcium and freeze-thawing technique. Using the freeze thawing process for polyvinyl alcohol crosslinking, in addition to alginate crosslinking, improved hydrogel swelling behavior and enhanced drug loading and thus slowed drug release, drug loading increased with increasing PVA percentage from ... 

    Fabrication the Hydrogel Microfibers Using Bioprinter with Application in Cardiovascular Model

    , M.Sc. Thesis Sharif University of Technology Heidari, Faranak (Author) ; Saadatmand, Maryam (Supervisor)
    Abstract
    Cardiovascular disease (CVD) currently remains a considerable challenge for clinical treatments. CVDs account for N17.5 million deaths per year and will predictably increase to 23.6 million by 2030. The main purpose is to create human model systems to study the effect of disease mutations or drug treatment on the heart. In addition, engineered cardiac tissues are considered promising candidates to be transplanted to improve the function of diseased hearts. For engineered active tissues/organs, 3D bioprinting can fabricate complex tissue architecture with a spatiotemporal distribution of bioactive substances (cells, growth factors, and others) to better guide tissue regeneration. However,... 

    Fabrication of Thick Scaffold with Microfluidic Channels by Bioprinter

    , M.Sc. Thesis Sharif University of Technology Khalighi, Sadaf (Author) ; Saadatmand, Maryam (Supervisor)
    Abstract
    Cardiovascular diseases are among the leading causes of death worldwide. For instance, in 2015, almost 31% of the world’s mortality rate was due to these causes. One of these diseases is cardiac coronary vessels’ occlusion which leads to the insufficient blood supply to the heart tissue and cardiomyocytes death after Myocardial Infarction (MI). After MI, a hierarchy of events in the heart tissue changes heart muscle and forms cardiac fibrosis. This fibrotic tissue does not have the native one’s properties and function, so it will cause cardiac arrest and patient death. Therefore, it is obvious that vascular network plays a crucial role in the heart function. The importance of cardiac... 

    Folic Acid Microencapsulation

    , M.Sc. Thesis Sharif University of Technology Kiaeipour, Pegah (Author) ; Alemzadeh, Iran (Supervisor)
    Abstract
    Most natural folate derivatives are highly sensitive to temperature, oxygen and light and their stability depends on food process condition. Alginate and pectin were evaluated for folic acid encapsulation and increasing its stability. By combining them and optimising encapsulation condition the efficiency was enhanced up to 90% . Furthermore, using polymers in combined form caused decrease in folic acid leakage from capsules in acidic condition of stomach. First of all, the time of encapsulation was measured which was 140-180 minutes. In this study the effect of Calcium Chloride concentration on encapsulation was studied. Therefore, two variables were selected which were pectin to algine... 

    Copper Adsorption by Nanoadsorbents Based Graphene Oxide from Industrial Wastewater

    , M.Sc. Thesis Sharif University of Technology Pishnamazi, Mohammad (Author) ; Borghei, Mehdi (Supervisor) ; Ghasemi, Shahnaz (Co-Supervisor)
    Abstract
    In this thesis, a novel graphene oxide (GO)/sodium alginate (SA)/polyacrylamide (PAM) ternary nanocomposite hydrogel with excellent mechanical performance has been fabricated through freeradical polymerization of acrylamide (AAm) and SA in the presence of GO in an aqueous system followed with ionically crosslinking of calcium ions. Physical and chemical characteristics of the composite were investigated by Fourier transform infrared spectroscopy and scanning electron microscopy. The swelling behaviors of the composite hydrogels were investigated under varying conditions of time and pH. The optimized swelling capacity in standard conditions was found to be 1711% per gram of the hydrogel. The... 

    Adsorption Of Uranium from Phosphoric acid and Waste Water with Microcapsules Contains Selective Extractants

    , M.Sc. Thesis Sharif University of Technology Tayebi, Ahmad (Author) ; Ghofrani, Mohammad Bagher (Supervisor) ; Khanchi, Alireza (Supervisor) ; Outokesh, Mohammad (Co-Advisor)
    Abstract
    Uptake characteristics of alginate microcapsules containing D2EHPA/TOPO for adsorption of uranium from industrial effluent were examined using batch, stirred and column method .stable alginate microcapsules in dried form was developed by immobilizing of D2EHPA/TOPO in porous matrix of calcium alginate. Characteristics of microcapsules were carrying out by destructive chemical analysis, BET, SEM and TG .the synthesized microcapsules showed a good column properties and high selectivity and reusability. In addition, isotherm adsorption of calcium alginate and microcapsules were fitted with frendlich's equation .the microcapsules also demonstrated that, the uptake percentage was constantly high... 

    Cell Separation via Nano-porous Molecularly Imprinted Polymer

    , M.Sc. Thesis Sharif University of Technology Rahnema Falavarjani, Eiman (Author) ; Abdekhodaie, Mohammad Jafar (Supervisor) ; Nematollah Zade, Ali (Co-Advisor)
    Abstract
    Molecularly imprinted polymers (MIPs) with synthetic recognition sites are capable of detecting and separating chemical species in complex environments. These characteristics are of increasing interest for bioanalytical applications. The chief advantages of MIPs are mechanical and chemical stability, low cost, and ease of preparation. Recently, imprinting technology has been used for fabrication polymer thin films with recognition sites of proteins, plant viruses, and yeasts. Also few investigations applied lithography for synthesis of cell imprinted polymers targeting cell detection and observation of cell morphology.
    For the first time, we demonstrate surface imprinting for the... 

    Human Cells Separation Via Imprinted Polymer

    , M.Sc. Thesis Sharif University of Technology Sabaghi, Davood (Author) ; Abdekhodaie, Mohammad Jafar (Supervisor)
    Abstract
    The goal of this research is to elucidate the mechanism of Cell recognition in molecularly imprinted polymers (MIPs) using already utilized techniques. Our approach employs a more flexible non-covalent imprinting method which starts from a readily available polymer and utilizes an aqueous environment for both MIP synthesis and testing. Cell MIPs against MG-63 cell were synthesized. The synthesis procedure was optimized to obtain better binding characteristics to the targeted cell. Adsorption of target cell onto imprinted Alginate Spheres was facilitated by these macromolecular fingerprints as revealed by various microscopical examinations The imprinted Spheres showed high selectivity toward... 

    Production of drug Loaded Microgels Using Microfluidic

    , M.Sc. Thesis Sharif University of Technology Mehraji, Sima (Author) ; Saadatmand, Maryam (Supervisor) ; Eskandari, Mahnaz (Supervisor)
    Abstract
    Microfluidic systems have the ability to produce microgels with uniform size distribution and spherical shape due to the laminar flow and better control of the flow rates. Spherical microgels with same size can be used as high-potential carriers for drug release. An important challenge in the production of these drug-carrying microgels is the simultaneous process of drug loading into microgels and their production. The overall goal of this project was to produce drug-carrying microgels with uniform size distribution that show controlled drug release. To achieve this goal, various factors such as the type of polymer, the type of drug, the volume ratio of the polymer and the drug and the... 

    Fabrication and Enhancement of an Antibacterial Chitosancoated Allantoin-Loaded Skin Wound Dressing for Clinic Use

    , M.Sc. Thesis Sharif University of Technology Haki Zahi Margouk, Mohamamd (Author) ; Shamloo, Amir (Supervisor) ; Akbari, Javad (Supervisor)
    Abstract
    Skin as the largest organ of the body is constructed of three distinctive layers referred to as epidermis, dermis, and hypodermis. Epidermis is the outermost layer of the skin and acts as body’s first barrier against infectious agents and contains mostly sweat glands. Dermis is the mid-layer of the skin which makes up to 70% of the skin and plays a significant role in maintaining body’s metabolism and is home to a huge part of skin’s vascular network, nerve cells and hair follicles. Hypodermis on other hand, is the deepest layer of the skin and mainly acts as a bonding layer between upper skin layers and the soft tissue underneath. Although skin is proved to have a profound ability to... 

    Development of Modified Nanostructures for Fabrication of Polymer Nanocomposite Films for Controlled Atmosphere Food Packaging

    , Ph.D. Dissertation Sharif University of Technology Riahi, Zohreh (Author) ; Bagheri, Reza (Supervisor) ; Pircherghi, Gholamreza (Supervisor) ; Mohammadpour, Raheleh (Co-Supervisor)
    Abstract
    Active packaging is a novel approach that can ensure food safety by removing undesirable compounds such as Oxygen, ethylene, moisture, and microbial contamination from fresh produce's environment and reducing product loss by extending shelf life. Current research on active food packaging materials focuses on using biopolymers such as carbohydrates, proteins, and lipids as alternatives to non-degradable petroleum-based packaging materials. Active nanomaterials are commonly used to impart functionality to packaging materials. However, the lack of functionality limits their industrial application.Therefore, the main objective of this work was to fabricate bioactive nanocomposite films by... 

    Synthesis of Double Network Hydrogels Based on Chitosan, Alginate, and Poly (Vinyl Alchohol) with High Mechanical Properties and Investigation of Their Biocompatibility

    , M.Sc. Thesis Sharif University of Technology Tavakkoli, Elham (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    Double network (DN) hydrogels are a new interpenetrate polymer network (IPN) that are usually contain about 60-90 % water. Despite of this amount of water, they are though and strong. DN hydrogels comprise of two networks, the first one as the brittle gel, is generally high density crosslinked and the second one, the loose and stretchable network, is loosely crosslinked or even without crosslinking. Therefore, we used cationic polymer, chitosan, and anionic polymer, alginate, as the first networks, therefore, we used sodium phosphate for physical crosslinking of chitosan, and calcium chloride as the physical crosslinking agents for alginate network. Also, poly (vinyl alcohol) (PVA), as the... 

    Design and Synthesis of Heterogeneous Nano Catalyst Based on Immobilized Palladium Metal on Double Network Hydrogel and Its Application in Organic Reactions

    , M.Sc. Thesis Sharif University of Technology Ghasemzadeh, Solmaz (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    In the past few decades, many attempts have been made to combine the benefits of homogeneous and heterogeneous catalysts. The immobilization of homogeneous catalysts onto the surface of heterogeneous supports is the result of such efforts. In this research, immobilized heterogeneous catalysts were designed and synthesized based on double network hydrogels, which produce from interpenetrating of two biocompatible and biodegradable polymer networks. In order to provide magnetic responsibility and easy separation of catalyst from the reaction mixture, the magnetic nanoparticles were dispersed onto the surface of double network hydrogel. Finally, various metal nanoparticles such as palladium and... 

    Facilitation of Transscleral Drug Delivery

    , M.Sc. Thesis Sharif University of Technology Mousavi Khamene, Zeynab (Author) ; Abdekhodaie, Mohammad Jafar (Supervisor) ; Seifkordi, Aliakbar (Supervisor) ; Ahmadieh, Hamid (Co-Supervisor)
    Abstract
    In the present research the methods and challenges to ocular drug delivery have been investigated with more emphasis on ocular diseases that do not have any approved treatment. Periocular route is a promising alternative to the common routes of ocular drug delivery especially for treatment of posterior eye diseases. Based on barriers for efficient drug delivery to the eye, magnetic drug targeting revealed to be influential to eliminate some obstacles of this route which has not been worked before. It is hypothesized that the particles can pulled into the eye or will be trapped inside the sclera tissue or even if it is not happened, they can stay behind the sclera and magnetic force can... 

    Enzyme Immobilization on Biopolymer Carrier by Microencapsulation Technique

    , M.Sc. Thesis Sharif University of Technology Hemmati, Mostafa (Author) ; Aalemzadeh, Iran (Supervisor) ; Vossoughi, Manouchehr (Supervisor)
    Abstract
    β-galactosidase enzyme is immobilized from Kluyveromyces lactis by Microencapsulation method in various compositions of sodium alginate and Carboxymethyl cellulose. Optimum stabilization was gained at 1.85% sodium alginate, 0.9% carboxymethyl cellulose and 2% calcium chloride through applying Surface response methodology. Yield of immobilization and activity was 54.94% and 65.27%. variation of yield of immobilization versus alginate concentration was a quadratic curve with the maximum. When alginate's concentrations is low, the cavities diameter is great, so the enzyme leaks from capsule while immobilizing. At high concentrations of alginate, despite the smaller cavities, immobilization... 

    Alginate/PVP/Pomegranate Seed Hydrogels as Bio-sorbents of Water Pollutants

    , M.Sc. Thesis Sharif University of Technology Hashemzadeh, Payam (Author) ; Frounchi, Masoud (Supervisor) ; Mollaabasi, Payam (Co-Supervisor)
    Abstract
    In the past decades, hydrogels have been used as an adsorbent with high potential to remove pollutants in water. Hydrogels are three-dimensional polymer networks that have the ability to absorb and store water and water-soluble compounds due to the presence of hydrophilic functional groups in their structure. Different particles with unique characteristics can be used to increase the efficiency of hydrogel absorption. Based on the type of pollutant, hydrogels are divided into three different forms, including particles, films and nanocomposites. In this research, the absorption effect of metal cations as well as the absorption kinetics of polyvinyl pyrrolidine-based hydrogels, sodium... 

    Optimization of Asparaginase Immobilization on Carrier

    , M.Sc. Thesis Sharif University of Technology Bahraman, Fatemeh (Author) ; Alemzadeh , Iran (Supervisor) ; Kazemi, Akhtarolmolok (Supervisor)
    Abstract
    The enzyme L-asparaginase (L-asparagine amidohydroxylase , EC 3.5.1.1) is utilizable in the treatment of acute childhood lymphoblastic leukaemia. L-asparaginase catalyses the hydrolysis of the amino acid L- asparagines to L-aspartic acid and ammonia. Unlike normal cells,malignant cells which can only slowly synthesize L-asparagine , are killed by lacking exogenous supply. In contrast, normal cells are protected from Asn-starvation due to their ability to produce this amino acid.
    In this study , L- asparaginase from E.coli, was immobilized onto a polymeric compound, poly(vinyl alcohol)(PVA) with cross-linking agent glutaraldehyde and calcium alginate beads .. Herein ,with the use of the... 

    Optimization of Insulin Releasing from Hydrogel Encapsulated Beta Cells

    , M.Sc. Thesis Sharif University of Technology Abbasi Jamaati, Parisa (Author) ; Alemzadeh, Iran (Supervisor) ; Vosoughi, Manouchehr (Co-Supervisor)
    Abstract
    Beta cells are responsible for secreting insulin to maintain normoglycaemia throughout the individual’s life. Type 1 Diabetes Mellitus (T1DM) is a metabolic disorder characterized by an autoimmune response that promotes the destruction of beta-cells within the pancreatic islets, resulting in lifelong inadequate insulin secretion. Encapsulating beta cells inside a semipermeable membrane to protect encapsulated cells from direct contact with the host immune system, is a new way to treat type 1 diabetes without the need for long-term immunosuppression. . In this case, the semipermeable membrane surrounds the cells and allows oxygen, nutrients, and cell products to penetrate bilaterally while... 

    Optimization of Lipase Immobilization

    , M.Sc. Thesis Sharif University of Technology Sayyar Kavardi, Sepideh (Author) ; Aalemzadeh, Iran (Supervisor) ; Kazemi, Akhtarolmolouk (Supervisor)
    Abstract
    In this study, Pseudomonas aeruginosa BBRC-10036 was used for lipase production. The organism secreted the enzyme extracellulary. First of all, effect of initial pH of the culture broth on lipase activity was studied in order to determine the optimum condition for lipase production. After production, this enzyme must be separated from culture and after that the enzyme must be purified for using in analysis and industry. Different methods are used for purification of the enzyme. In this research, first precipitation was used and then this lipase has been purified by Ion exchange Chromatography leading to 2.33- fold purification and 11.47% recovery. In precipitation by acetone, maximum...