Loading...
Search for: alginate
0.01 seconds
Total 113 records

    Removal of Cu (ll) from industrial wastewater using poly (acrylamide-co-2-acrylamide-2-methyl propane sulfonic acid)/graphene oxide/sodium alginate hydrogel: Isotherm, kinetics, and optimization study

    , Article Journal of Water Process Engineering ; Volume 42 , 2021 ; 22147144 (ISSN) Pishnamazi, M ; Ghasemi, S ; Khosravi, A ; ZabihiSahebi, A ; Hasan Zadeh, A ; Borghei, S. M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Here, Graphene oxide/poly (acrylamide -2-acrylamide-methyl-propanesulfonic acid)/sodium alginate (GO/PA-AMPS/SA) hydrogel was synthesized through a free-radical polymerization approach. The impact of Graphene Oxide (GO) content on mechanical strength, swelling behavior, and the adsorption performance of prepared hydrogel was studied. The operating parameters, including contact time, solution pH, and initial Cu(II) content on the adsorption capacity of the hydrogel, were studied. The maximum Cu(II) adsorption capacity of 230.8 mg/g was obtained for GO/PA-AMPS/SA under a pH of 5, the contact time of 270 min, and adsorbent content of 0.5 g/L at 25 °C. The high value of adsorption capacity after... 

    Potential effects of alginate–pectin biocomposite on the release of folic acid and their physicochemical characteristics

    , Article Journal of Food Science and Technology ; Volume 57, Issue 9 , March , 2020 , Pages 3363-3370 Kiaei Pour, P ; Alemzadeh, I ; Vaziri, A. S ; Beiroti, A ; Sharif University of Technology
    Springer  2020
    Abstract
    Potential effects of folates on the treatment of several human diseases like cognitive function, neural tube defects, coronary heart disease and certain kinds of cancers have been discovered. However, the stability of folic acid against adverse conditions is a great concern. The present study investigates various alginate (A)–pectin (P) gastrointestinal-resistant hydrogel to immobilize folic acid. This involves evaluating different compositions of alginate–pectin to achieve higher encapsulation efficiency and stability during simulated gastric (SG) and simulated intestinal (SI) conditions. Coated alginate hydrogels with pectin resulted significant (p < 0.05) better protection of folic acid... 

    Phenols removal by immobilized horseradish peroxidase

    , Article Journal of Hazardous Materials ; Volume 166, Issue 2-3 , 2009 , Pages 1082-1086 ; 03043894 (ISSN) Alemzadeh, I ; Nejati, S ; Sharif University of Technology
    2009
    Abstract
    Application of immobilized horseradish peroxidase (HRP) in porous calcium alginate (ca-alginate) for the purpose of phenol removal is reported. The optimal conditions for immobilization of HRP in ca-alginate were identified. Gelation (encapsulation) was optimized at 1.0% (w/v) sodium alginate in the presence of 5.5% (w/v) of calcium chloride. Upon immobilization, pH profile of enzyme activity changes as it shows higher value at basic and acidic solution. Increasing initial phenol concentration results in a decrease in % conversion. The highest conversion belongs to phenol concentration of 2 mM. Investigation into time course of phenol removal for both encapsulated and free enzymes showed... 

    Partially hydrolyzed crosslinked alginate-graft-polymethacrylamide as a novel biopolymer-based superabsorbent hydrogel having pH-responsive Properties [electronic resource]

    , Article Macromolecular Research ; January 2005, Volume 13, Issue 1, pp 45-53 Pourjavadi, A. (Ali) ; Aminfazl, M. S ; Hosseinzadeh, H
    Abstract
    In this study, a series of highly swelling hydrogels based on sodium alginate (NaAlg) and polymethacrylamide (PMAM) was prepared through free radical polymerization. The graft copolymerization reaction was performed in a homogeneous medium and in the presence of ammonium persulfate (APS) as an initiator andN,N′-methylenebisacrylamide (MBA) as a crosslinker. The crosslinked graft copolymer, alginate-graft-polymethacrylamide (Alg-g-PMAM), was then partially hydrolyzed by NaOH solution to yield a hydrogel, hydrolyzed alginate-graft-polymethacrylamide (H-Alg-g-PMAM). During alkaline hydrolysis, the carboxamide groups of Alg-g-PMAM were converted into hydrophilic carboxylate anions. Either the... 

    Partially hydrolyzed crosslinked alginate-graff-polymethacrylamide as a novel biopolymer-based superabsorbent hydrogel having pH-responsive properties

    , Article Macromolecular Research ; Volume 13, Issue 1 , 2005 , Pages 45-53 ; 15985032 (ISSN) Pourjavadi, A ; Amini Fazl, M. S ; Hosseinzadeh, H ; Sharif University of Technology
    Polymer Society of Korea  2005
    Abstract
    In this study, a series of highly swelling hydrogels based on sodium alginate (NaAlg) and polymethacrylamide (PMAM) was prepared through free radical polymerization. The graft copolymerization reaction was performed in a homogeneous medium and in the presence of ammonium persulfate (APS) as an initiator and N,N'-methylenebisacrylamide (MBA) as a crosslinker. The crosslinked graft copolymer, alginate-graft-polymethacrylamide (Alg-g-PMAM), was then partially hydrolyzed by NaOH solution to yield a hydrogel, hydrolyzed alginate-graft-polymethacrylamide (H-Alg-g-PMAM). During alkaline hydrolysis, the carboxamide groups of Alg-g-PMAM were converted into hydrophilic carboxylate anions. Either the... 

    Optimization of l-asparaginase immobilization onto calcium alginate beads

    , Article Chemical Engineering Communications ; Volume 204, Issue 2 , 2017 , Pages 216-220 ; 00986445 (ISSN) Bahraman, F ; Alemzadeh, I ; Sharif University of Technology
    Taylor and Francis Ltd  2017
    Abstract
    In this study, anti-leukemic enzyme L-asparaginase (E.C.3.5.1.1) from Escherichia coli ATCC 11303 was modified by the microencapsulation technique onto calcium alginate beads. Using response surface methodology (RSM), a three-level full factorial design, the values of concentration of sodium alginate, concentration of calcium chloride, and enzyme loading were investigated to obtain the highest residual L-asparaginase (L-ASNase) activity % (immobilized enzyme activity/free enzyme activity). The effects of the studied factors on immobilization were evaluated The predicted values by the model were close to the experimental values, indicating suitability of the model. The results presented that... 

    Optimization of alginate-whey protein isolate microcapsules for survivability and release behavior of probiotic bacteria

    , Article Applied Biochemistry and Biotechnology ; Volume 190, Issue 1 , 2020 , Pages 182-196 Sajadi Dehkordi, S ; Alemzadeh, I ; Vaziri, A. S ; Vossoughi, A ; Sharif University of Technology
    Springer  2020
    Abstract
    The present study aimed to improve the survivability of L. acidophilus encapsulated in alginate-whey protein isolate (AL-WPI) biocomposite under simulated gastric juice (SGJ) and simulated intestinal juice (SIJ). Microcapsules were prepared based on emulsification/internal gelation technique. Optimal compositions of AL and WPI and their ratio in the aqueous phase were evaluated based on minimizing mean diameter (MD) of the microcapsules and maximizing encapsulation efficiency (EE), survivability of cells under SGJ (Viability), and release of viable cells under SIJ (Release) using Box-Behnken experimental design. Optimal composition comprising 4.54% (w/v) AL, 10% (w/v) WPI, and 10% (v/v)... 

    Natural polymers decorated mof-mxene nanocarriers for co-delivery of doxorubicin/pCRISPR

    , Article ACS Applied Bio Materials ; Volume 4, Issue 6 , 2021 , Pages 5106-5121 ; 25766422 (ISSN) Rabiee, N ; Bagherzadeh, M ; Jouyandeh, M ; Zarrintaj, P ; Saeb, M. R ; Mozafari, M ; Shokouhimehr, M ; Varma, R. S ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    A one-pot and facile method with assistance of high gravity was applied for the synthesis of inorganic two-dimensional MOF-5 embedded MXene nanostructures. The innovative inorganic MXene/MOF-5 nanostructure was applied in co-delivery of drug and gene, and to increase its bioavailability and interaction with the pCRISPR, the nanomaterial was coated with alginate and chitosan. The polymer-coated nanosystems were fully characterized, and the sustained DOX delivery and comprehensive cytotoxicity studies were conducted on the HEK-293, PC12, HepG2, and HeLa cell lines, demonstrating acceptable and excellent cell viability at both very low (0.1 μg.mL-1) and high (10 μg·mL-1) concentrations. The... 

    Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing

    , Article Advanced Drug Delivery Reviews ; Volume 123 , 2018 , Pages 33-64 ; 0169409X (ISSN) Mofazzal Jahromi, M. A ; Sahandi Zangabad, P ; Moosavi Basri, S. M ; Sahandi Zangabad, K ; Ghamarypour, A ; Aref, A. R ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    According to the latest report from the World Health Organization, an estimated 265,000 deaths still occur every year as a direct result of burn injuries. A widespread range of these deaths induced by burn wound happens in low- and middle-income countries, where survivors face a lifetime of morbidity. Most of the deaths occur due to infections when a high percentage of the external regions of the body area is affected. Microbial nutrient availability, skin barrier disruption, and vascular supply destruction in burn injuries as well as systemic immunosuppression are important parameters that cause burns to be susceptible to infections. Topical antimicrobials and dressings are generally... 

    Nanodiamonds for surface engineering of orthopedic implants: Enhanced biocompatibility in human osteosarcoma cell culture

    , Article Diamond and Related Materials ; Volume: 40 , 2013 , Pages: 107-114 ; 09259635 (ISSN) Mansoorianfar, M ; Shokrgozar, M. A ; Mehrjoo, M ; Tamjid, E ; Simchi, A ; Sharif University of Technology
    2013
    Abstract
    Recently, nanodiamonds have attracted interest in biomedical applications such as drug delivery, targeted cancer therapies, fabrication of tissue scaffolds, and biosensors. We incorporated diamond nanoparticles in alginate-bioactive glass films by electrophoretic process to prepare functional coatings for biomedical implants. Turbidity examination by time-resolved laser transmittance measurement revealed that a stable multi-component aqueous suspension of alginate, bioactive glass and diamond particles could be obtained at concentrations of 0.6, 1.3, and 0.65 g/l, respectively. Uniform films with ~ 5 μm thickness were deposited on 316 stainless steel foils by employing constant field... 

    Milk cholesterol reduction using immobilized Lactobacillus acidophilus ATCC1643 in sodium-alginate

    , Article International Journal of Food Engineering ; Volume 4, Issue 8 , 2008 ; 15563758 (ISSN) Serajzadeh, S ; Alemzadeh, I ; Sharif University of Technology
    Walter de Gruyter GmbH  2008
    Abstract
    Lactobacillus acidophilus is one of the major microorganisms which are famous for their effects on cholesterol. In this study, we have investigated the effect of L. acidophilus ATCC 1643 on removing the milk cholesterol and additionally, we have immobilized L. acidophilus ATCC1643 cells in sodium-alginate and observed its effect on milk cholesterol removing. Also, we have researched about the effect of some factors including: bacteria cells number (both free and immobilized cells) and immobilized cells bead size on cholesterol removing rate and ultimately the extracted results were compared together. The results indicated that free cells could reduce cholesterol to lower than 0.5mg/100ml... 

    MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels

    , Article Carbohydrate Polymers ; Volume 66, Issue 3 , 2006 , Pages 386-395 ; 01448617 (ISSN) Pourjavadi, A ; Barzegar, Sh ; Mahdavinia, G. R ; Sharif University of Technology
    2006
    Abstract
    A novel superabsorbent hydrogel composed of carboxymethylcellulose (CMC) and sodium alginate (Na-Alg) was prepared by using methylenebisacrylamide (MBA) as a crosslinking agent. Ammonium persulfate (APS) was used as an initiator. For investigation of the effect of reaction variables on water absorbency of the hydrogels, the synthetic conditions were systematically optimized through studying the influential factors, including temperature, Na-Alg/CMC weight ratio and concentration of MBA and APS. Increase in MBA and APS concentration results in the decrease in water absorbency of the hydrogels. The water absorbency of the hydrogels increased with increasing of reaction temperature and... 

    Magnetic graphene oxide mesoporous silica hybrid nanoparticles with dendritic pH sensitive moieties coated by PEGylated alginate-co-poly (acrylic acid) for targeted and controlled drug delivery purposes

    , Article Journal of Polymer Research ; Volume 22, Issue 8 , 2015 ; 10229760 (ISSN) Pourjavadi, A ; Shakerpoor, A ; Tehrani, Z. M ; Bumajdad, A ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    In this study synthesis of a drug delivery system (DDS) is described which has several merits over its counterparts. In order to synthesize this nano-carrier, graphene oxide nano-sheets are used to accommodate MCM-41 nanoparticles. Furthermore Fe3O4 nanoparticles are introduced to this nano-material to produce a traceable nanoparticle. Since cancerous tissues have lower pH than healthy tissues, pH-sensitive oligomers are attached to this nano-material. Finally the nano-carrier is wrapped by a biocompatible shell (PEGylated sodium alginate); this polymeric shell makes the DDS capable of a more controllable drug release. By measuring in vitro situation, ‘loading content%’... 

    Magnetic/pH-sensitive κ-carrageenan/sodium alginate hydrogel nanocomposite beads: Preparation, swelling behavior, and drug delivery

    , Article Journal of Biomaterials Science, Polymer Edition ; Vol. 25, issue. 17 , 2014 , p. 1891-1906 Mahdavinia, G. R ; Rahmani, Z ; Karami, S ; Pourjavadi, A ; Sharif University of Technology
    Abstract
    This work describes the preparation of magnetic and pH-sensitive beads based on κ-carrageenan and sodium alginate for use as drug-targeting carriers. Physical cross-linking using K+/Ca2+ ions was applied to obtain ionic cross-linked magnetic hydrogel beads. The produced magnetite beads were thoroughly characterized by TEM, SEM/EDS, XRD, FTIR, and VSM techniques. While the water absorbency (WA) of magnetic beads was enhanced by increasing the weight ratio of κ-carrageenan, introducing magnetic nanoparticles caused a decrease in WA capacity from 15.4 to 6.3 g/g. Investigation on the swelling of the hydrogel beads in NaCl, KCl, and CaCl2 solutions revealed the disintegration of beads depending... 

    Irradiation synthesis of biopolymer-based superabsorbent hydrogel: optimization using the taguchi method and investigation of its swelling behavior

    , Article Advances in Polymer Technology ; Volume 28, Issue 2 , 2009 , Pages 131-140 ; 07306679 (ISSN) Rezanejade Bardajee, G ; Pourjavadi, A ; Soleyman, R ; Sharif University of Technology
    2009
    Abstract
    In this report, the synthesis of a novel superabsorbent hydrogel via γ-irradiation graft copolymerization of acrylamide onto sodium alginate and kappa-carrageenan hybrid backbones in a homogeneous solution is described. The Taguchi method was used as a powerful experimental design tool for synthesis optimization. A series of superabsorbent hydrogels was synthesized by proposed conditions of Qualitek-4 software. Considering the results of nine trials according to analysis of variance, optimum conditions were proposed. The swelling behavior of optimum superabsorbent hydrogels was studied in various solutions, with pH values ranging from 1 to 13. In addition, swelling kinetics, swelling in... 

    Investigating the effects of precursor concentration and gelling parameters on droplet-based generation of Ca-Alginate microgels: identifying new stable modes of droplet formation

    , Article Materials Today Chemistry ; Volume 24 , 2022 ; 24685194 (ISSN) Besanjideh, M ; Rezaeian, M ; Mahmoudi, Z ; Shamloo, A ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Droplet-based microfluidics is an attractive approach for producing microgels due to its high potential to control the size and shape of the particles and precisely entrap the substances within the hydrogel matrix. However, the microfluidic generation of monodisperse microgels with desired structures is still challenging. Indeed, the rheological and interfacial properties of the immiscible fluids, as well as the adopted gelling strategy, play important roles in microfluidic methods. Herein, sodium alginate droplets with different concentrations are generated via a microfluidic device with a flow-focusing unit. Besides, a combined in situ and ex situ strategy is optimized to crosslink sodium... 

    Investigating the effect of design parameters on the response time of a highly sensitive microbial hydrogen sulfide biosensor based on oxygen consumption

    , Article Biosensors and Bioelectronics ; Volume 70 , 2015 , Pages 106-114 ; 09565663 (ISSN) Vosoughi, A ; Yazdian, F ; Amoabediny, G ; Hakim, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    A novel hydrogen sulfide microbial biosensor was developed based on investigating the influence of four design parameters: cell concentration, immobilization bed type, hydrogen sulfide concentration, and geometrical shape of the biosensor. Thiobacillus thioparus was used as the recognition element and it was immobilized on sodium alginate as well as agarose bed. The results were optimized by the application of statistical optimization software based on response time of the system. Oxygen reduction was considered as the detection sign. Sodium alginate solution with a concentration of 2.3% (w/v) and optical density of 10 at 605. nm was found as the optimum conditions for immobilization with... 

    Injectable hydrogels based on oxidized alginate-gelatin reinforced by carbon nitride quantum dots for tissue engineering

    , Article International Journal of Pharmaceutics ; Volume 602 , 2021 ; 03785173 (ISSN) Ghanbari, M ; Salavati Niasari, M ; Mohandes, F ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Stem cell treatment is promising in the various disorders treatment, but its effect is confined by the adverse conditions in the damaged tissues. The utilization of hydrogels has been suggested as a procedure to defeat this issue by developing the engraftment and survival of injected stem cells. Specifically, injectable hydrogels have drawn much attention due to their shape adaptability, ease of use, and the capability to reach body parts that are hard to access. In this study, the thermosensitive injectable hydrogels based on oxidized alginate, gelatin, and carbon nitride quantum dots (CNQDs) have been fabricated for tissue engineering. The mechanical characteristics of the nanocomposite... 

    Improving survivability of lactobacillus plantarum in alginate-chitosan beads reinforced by Na-tripolyphosphate dual cross-linking

    , Article LWT ; Volume 97 , 2018 , Pages 440-447 ; 00236438 (ISSN) Vaziri, A. S ; Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
    Abstract
    In the present study, Lactobacillus plantarum PTCC 1058 was microencapsulated in Alginate-chitosan blended beads based on ionically dual cross-linking by Na-tripolyphosphate (Na-TPP). The homogenous solution of bacteria and alginate was dripped into the gelling bath of calcium chloride. After 30 min hardening, filtrate beads were transferred into the solution of chitosan. Dual cross-linked gel beads were prepared by employing Na-TPP solution to the chitosan coated beads. Morphology, particle size, alginate-chitosan interaction, characterizing the structure of single and dual cross-linked beads were determined by using scanning electron microscopy SEM, FTIR and XRD analysis. FTIR analysis... 

    Immunomodulating hydrogels as stealth platform for drug delivery applications

    , Article Pharmaceutics ; Volume 14, Issue 10 , 2022 ; 19994923 (ISSN) Rezaei, Z ; Yilmaz Aykut, D ; Tourk, F. M ; Bassous, N ; Barroso Zuppa, M ; Shawl, A. I ; Ashraf, S. S ; Avci, H ; Hassan, S ; Sharif University of Technology
    MDPI  2022
    Abstract
    Non-targeted persistent immune activation or suppression by different drug delivery platforms can cause adverse and chronic physiological effects including cancer and arthritis. Therefore, non-toxic materials that do not trigger an immunogenic response during delivery are crucial for safe and effective in vivo treatment. Hydrogels are excellent candidates that can be engineered to control immune responses by modulating biomolecule release/adsorption, improving regeneration of lymphoid tissues, and enhancing function during antigen presentation. This review discusses the aspects of hydrogel-based systems used as drug delivery platforms for various diseases. A detailed investigation on...