Loading...
Search for: alternative-energy
0.011 seconds
Total 34 records

    Expansion planning of generation technologies in electric energy systems under water use constraints with renewable resources

    , Article Sustainable Energy Technologies and Assessments ; Volume 43 , 2021 ; 22131388 (ISSN) Pourmoosavi, M. A ; Amraee, T ; Firuzabad, M. F ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Thermal power generation needs great volumes of water for cooling purposes. A multi-period Low Water Generation Expansion Planning (LW-GEP) model is proposed to plan the future generation mix including type, capacity, time of installation, and proper cooling system of generation technologies to supply the future electric peak loads under the water resource limitations. Different types of generation technologies with conventional and modern cooling systems are considered as expansion candidates in the proposed LW-GEP model. The access of candidate and existing power plants to the water resources are considered. Renewable resources as water smart solutions are integrated in the proposed energy... 

    Development of a framework for the sustainability evaluation of renewable and fossil fuel power plants using integrated LCA-emergy analysis: A case study in Iran

    , Article Renewable Energy ; Volume 179 , 2021 , Pages 1548-1564 ; 09601481 (ISSN) Alizadeh, S ; Avami, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study presents a comprehensive framework for evaluating renewable and non-renewable power plants' performance using the Life Cycle Analysis (LCA) and emergy analysis. The emergy analysis is used to consider the free ecosystem services in the sustainability of the systems as a supplement to the LCA. The results indicate that the wind and photovoltaic power plants have the best performance in terms of the LCA analysis, while the wind and combined cycle power plants have the highest emergy sustainability index. The best scenario is chosen under a two-objective optimization problem, including the single score and emergy sustainability as objective functions. Here, the wind power plant is... 

    Use of a hybrid wind—solar—diesel—battery energy system to power buildings in remote areas: A case study

    , Article Sustainability (Switzerland) ; Volume 13, Issue 16 , 2021 ; 20711050 (ISSN) Almutairi, K ; Hosseini Dehshiri, S. S ; Hosseini Dehshiri, S. J ; Mostafaeipour, A ; Issakhov, A ; Techato, K ; Sharif University of Technology
    MDPI  2021
    Abstract
    The emerging environmental consequences of overdependence on fossil fuels have pushed many countries to invest in clean and renewable sources of power. Countries like Iran where these sources can be found in abundance can take advantage of this potential to reduce their dependence on fossil fuels. This study investigated the feasibility of the standalone use of a hybrid renewable energy system (HRES) to power buildings in the Bostegan village in the Hormozgan province of Iran. Technical, economic, and environmental assessments were performed with the help of the Hybrid Optimization of Multiple Energy Resources (HOMER) software, and the optimal configuration for the system components was... 

    Development of a framework for the sustainability evaluation of renewable and fossil fuel power plants using integrated LCA-emergy analysis: a case study in Iran

    , Article Renewable Energy ; Volume 179 , 2021 , Pages 1548-1564 ; 09601481 (ISSN) Alizadeh, S ; Avami, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study presents a comprehensive framework for evaluating renewable and non-renewable power plants' performance using the Life Cycle Analysis (LCA) and emergy analysis. The emergy analysis is used to consider the free ecosystem services in the sustainability of the systems as a supplement to the LCA. The results indicate that the wind and photovoltaic power plants have the best performance in terms of the LCA analysis, while the wind and combined cycle power plants have the highest emergy sustainability index. The best scenario is chosen under a two-objective optimization problem, including the single score and emergy sustainability as objective functions. Here, the wind power plant is... 

    Use of a hybrid wind—solar—diesel—battery energy system to power buildings in remote areas: a case study

    , Article Sustainability (Switzerland) ; Volume 13, Issue 16 , 2021 ; 20711050 (ISSN) Almutairi, K ; Hosseini Dehshiri, S ; Hosseini Dehshiri, J ; Mostafaeipour, A ; Issakhov, A ; Techato, K ; Sharif University of Technology
    MDPI  2021
    Abstract
    The emerging environmental consequences of overdependence on fossil fuels have pushed many countries to invest in clean and renewable sources of power. Countries like Iran where these sources can be found in abundance can take advantage of this potential to reduce their dependence on fossil fuels. This study investigated the feasibility of the standalone use of a hybrid renewable energy system (HRES) to power buildings in the Bostegan village in the Hormozgan province of Iran. Technical, economic, and environmental assessments were performed with the help of the Hybrid Optimization of Multiple Energy Resources (HOMER) software, and the optimal configuration for the system components was... 

    Finding the best station in Belgium to use residential-scale solar heating, One-year dynamic simulation with considering all system losses: Economic analysis of using ETSW

    , Article Sustainable Energy Technologies and Assessments ; Volume 45 , June , 2021 ; 22131388 (ISSN) Kalbasi, R ; Jahangiri, M ; Mosavi, A ; Jalaladdin Hosseini Dehshiri, S ; Shahabaddin Hosseini Dehshiri, S ; Ebrahimi, S ; Al Sadat Etezadi, Z ; Karimipour, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The main purpose of this study is to provide the heating power for space heating and sanitary hot water for a residential house in sixteen stations located in Belgium using evacuated tube solar water (ETSW). A one-year dynamic simulation was performed using TSOL 5.5 software and Meteonorm 7.1 was used to obtain the climatic data. Technical and environmental studies as well as station rankings are the parameters that have been examined for the first time in the present study. The weighting results of using the Best-Worst method (BWM) revealed that total solar fraction and CO2 emission avoided have the highest and lowest weight, respectively. Station ranking was performed using ARAS technique... 

    Thermal performance analysis of an energy pile with triple helix ground heat exchanger

    , Article Geothermics ; Volume 104 , 2022 ; 03756505 (ISSN) Farajollahi, A. H ; Asgari, B ; Rostami, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    A Ground Source Heat Pump (GSHP) is a renewable energy-based HVAC system that extracts or supplies heat from/to the ground via a Ground Heat Exchanger (GHE). One of the most commonly used types of GHE in GSHP systems is the energy pile. In this realm, the GSHP system with a triple helix energy pile has become the focus of attention. To this aim, a comprehensive three-dimensional transient Computational Fluid Dynamics model of the energy pile with triple helix GHE and the surrounding soil is developed. The effect of several parameters, including helix pitch, helix diameter and pipe diameter, on the thermal performance of the system, is investigated. Simulated cases are chosen using the design... 

    Data-driven joint TEP-BESS co-planning scheme to relieve transmission lines congestion: A min-max regret method

    , Article Sustainable Energy Technologies and Assessments ; Volume 53 , 2022 ; 22131388 (ISSN) Mazaheri, H ; Moeini Aghtaie, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Transmission lines congestion has recently been a vital challenge in power systems operation due to the intermittent outputs of renewable energy sources (RES). Therefore, an efficient transmission congestion management (TCM) method should be defined to deal with the congestion issue. This paper aims to propose a simultaneous linearized two-stage TEP-BESS co-planning optimization model to relieve transmission lines congestion. In doing so, a novel TCM structure is suggested in a pool-based deregulated data-driven optimal power flows (D-OPF) by the computationally effective min-max regret method to consider future scenarios of generating units and demanded loads. To improve the efficiency of... 

    Maximizing the utilization of existing grids for renewable energy integration

    , Article Renewable Energy ; Volume 189 , 2022 , Pages 618-629 ; 09601481 (ISSN) Ranjbar, H ; Kazemi, M ; Amjady, N ; Zareipour, H ; Hosseini, S. H ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This paper presents a new model to maximize the utilization of existing transmission system infrastructure by optimally sizing and siting the future developments of variable renewable energy sources (VRES). The model tries to maximize the integration of VRES in power systems with minimum expected energy curtailment without relying on new investments in the transmission systems. The proposed model is formulated as a linear stochastic programming optimization problem where VRES output scenarios are generated such that their spatio-temporal correlations are maintained. The Progressive Hedging Algorithm (PHA) with bundled scenarios is utilized to solve the proposed model for large-scale cases.... 

    Hierarchical nickel-cobalt sulfide/niobium pentoxide decorated green carbon spheres toward efficient energy storage

    , Article Sustainable Energy and Fuels ; Volume 6, Issue 12 , 2022 , Pages 3042-3055 ; 23984902 (ISSN) Hekmat, F ; Shahi, M ; Dubal, D. P ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Progression in the renewable energy field is tied to the development of high-performance energy storage devices with superior power and energy densities. Herein, an innovative material design was employed to prepare binder-free nickel-cobalt sulfide (NCS) on niobium pentoxide (Nb2O5)-decorated carbon spheres (CSs). Initially, CSs were directly grown on nickel foam (NF) via a hydrothermal carbonization approach. Core/shell-like NCS@Nb2O5@CS-NF was then synthesized through a hydrothermal process, followed by an electrodeposition process. When employed as an electrode material, NCS@Nb2O5@CS-NF achieved an excellent volumetric capacity of 9300 C L−1 at a current density of 18 A L−1. Later, an... 

    A new application of measurement of alternatives and ranking according to compromise solution (MARCOS) in solar site location for electricity and hydrogen production: A case study in the southern climate of Iran

    , Article Energy ; Volume 261 , 2022 ; 03605442 (ISSN) Hosseini Dehshiri, S. S ; Firoozabadi, B ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In recent years, declining fossil fuel reserves and increasing environmental concerns led to higher utilization of renewable energy source (RES). One of the RES is Solar energy which is abundantly found in different areas of the globe, particularly in Iran. The aim of this research is to select a suitable site for constructing a solar power plant to generate electricity-hydrogen in southern Iran, Kerman province. For this purpose, a new hybrid Multi criteria decision making method is used. The Stepwise Weight Assessment Ratio Analysis (SWARA)method is used to weigh the criteria and the Measurement of alternatives and ranking according to Compromise solution (MARCOS)method is used to rank... 

    Flexibility pricing of integrated unit of electric spring and EVs parking in microgrids

    , Article Energy ; Volume 239 , 2022 ; 03605442 (ISSN) Norouzi, M ; Aghaei, J ; Pirouzi, S ; Niknam, T ; Fotuhi Firuzabad, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Electric spring (ES) as a breakthrough in power electronics has led to a revolution in demand-side management. This paper presents flexible power management (FPM) of a networked microgrid (MG) in the presence of renewable energy sources (RESs) and flexibility sources (FSs). The FSs include the novel topology of the integrated unit of ES with electric vehicles (EVs) parking (IUEE) and incentive-based demand response program (DRP). The proposed FPM model is formulated as an optimization problem that minimizes the difference between the expected energy cost and the expected profit of FSs' flexibility subject to the AC optimal power flow (AC-OPF), RESs, FSs, and MG flexibility constraints. In... 

    A new application of multi criteria decision making in energy technology in traditional buildings: A case study of Isfahan

    , Article Energy ; Volume 240 , 2022 ; 03605442 (ISSN) Hosseini Dehshiri, S.S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The use of hybrid renewable energy has increased in recent years due to the growing environmental concerns caused by the consumption of fossil fuels. The purpose of this study was the economic-environmental feasibility of using hybrid energy systems in one of the most polluted and populated provinces in Iran, Isfahan province. Various components of the hybrid energy system such as wind turbine (WT), photovoltaic panel (PV), diesel generator (DG), converter (CV) along with two scenarios of energy storage including battery (BT) and hydrogen storage have been considered in modeling the energy system. Six scenarios were considered based on the combination of different components for supplying... 

    Chance-constrained programming for optimal scheduling of combined cooling, heating, and power-based microgrid coupled with flexible technologies

    , Article Sustainable Cities and Society ; Volume 77 , 2022 ; 22106707 (ISSN) Mianaei, P.K ; Aliahmadi, M ; Faghri, S ; Ensaf, M ; Ghasemi, A ; Abdoos, A. A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Microgrids (MGs) have a special role in developing several consumers' energy infrastructure and supply in more economical, safer, and sustainable ways. The interaction and mutual relationship between each energy carrier on the reliable performance of other carriers and the high growth of tri-generation technologies in the MG face the optimal performance of such networks with many challenges. Combined cooling, heating, and power (CCHP)-based MGs are a new generation of MGs that simultaneously provide electrical, thermal, and cooling loads. However, the interaction between these carriers is very influential in CCHP-based MG's operation, which is rarely analyzed. Hence, this paper focuses on...