Loading...
Search for: analytic-solutions
0.007 seconds
Total 185 records

    Stress distribtuion on open-ended carbon nanotubes

    , Article 2008 Proceedings of the ASME - 2nd International Conference on Integration and Commercialization of Micro and Nanosystems, MicroNano 2008, 3 June 2008 through 5 June 2008, Kowloon ; 2008 , Pages 343-351 ; 0791842940 (ISBN); 9780791842942 (ISBN) Momeni, K ; Alasty, A ; Sharif University of Technology
    2008
    Abstract
    The stress distribution on open-ended Carbon Nanotubes (CNTs) embedded in a composite material is considered in this work and an analytical solution for the stress distribution has been obtained. The effects of CNT's thickness and CNT's length on the distribution of stress have been investigated. To find the governing relations, continuity equations of the axisymmetric problem in cylindrical coordinate (r,o,z) are used. Under some assumptions, the governing equations are solved and by using constitutive equations and applying the boundary conditions, an equation which relates the stress applied to the representative volume element with the stress distribution on the CNT, has been found. The... 

    Determination of potential function in contact problems

    , Article 8th International Conference on Computer Methods and Experimental Measurements for Surface and Contact Mechanics, CONTACT/SURFACE 2007, 16 May 2007 through 18 May 2007 ; Volume 55 , 2007 , Pages 227-236 ; 17433533 (ISSN); 9781845640736 (ISBN) Sharafbafi, F ; Adibnazari, S ; Sharif University of Technology
    2007
    Abstract
    In this paper, a relation is introduced that simplifies the determination of the Muskhelishvilis potential function in plane contact problems. The relation is (z)=1/2[p(z)iq(z)], which is correct for all uncoupled-elastic contact problems. This relation is proved in a mathematical way and utilized to obtain the potential function in several contact problems. A complete agreement has been observed between our results and the potential functions that have been obtained from complicated methods in the past. Utilization of the relation simplifies the solution of contact problems and analytical calculation of the stress and displacement fields, which is helpful in the analytical studies of... 

    On the stability of rotating pipes conveying fluid in annular liquid medium

    , Article Journal of Sound and Vibration ; Volume 494 , 2021 ; 0022460X (ISSN) Abdollahi, R ; Dehghani Firouz-abadi, R ; Rahmanian, M ; Sharif University of Technology
    Academic Press  2021
    Abstract
    This study provides a stability analysis of flexible rotating pipes taking into account the simultaneous effects of internal and external fluid loading. Using the Euler-Bernoulli beam assumptions, governing equations for flexural vibrations of rotating pipes are obtained. The internal flow characteristics and the double gyroscopic effect are taken into account when deriving the structural equations coupled with the internal flow. External fluid loading is determined by a special linearization of the Navier-Stokes equations. Considering the circular wall of the pipe as an impermeable boundary to the flow, fluid-induced forcing functions are obtained and then applied to the structural... 

    On the stability of rotating pipes conveying fluid in annular liquid medium

    , Article Journal of Sound and Vibration ; Volume 494 , 2021 ; 0022460X (ISSN) Abdollahi, R ; Dehghani Firouz-abadi, R ; Rahmanian, M ; Sharif University of Technology
    Academic Press  2021
    Abstract
    This study provides a stability analysis of flexible rotating pipes taking into account the simultaneous effects of internal and external fluid loading. Using the Euler-Bernoulli beam assumptions, governing equations for flexural vibrations of rotating pipes are obtained. The internal flow characteristics and the double gyroscopic effect are taken into account when deriving the structural equations coupled with the internal flow. External fluid loading is determined by a special linearization of the Navier-Stokes equations. Considering the circular wall of the pipe as an impermeable boundary to the flow, fluid-induced forcing functions are obtained and then applied to the structural... 

    An analytical investigation of transient imperfectly expanded turbulent jet

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 236, Issue 14 , 2022 , Pages 3057-3063 ; 09544100 (ISSN) Ghahremani, A ; Aramfard, M ; Saidi, M. H ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    Supersonic turbulent high-pressure jet flows, which are discharging in low-pressure quiescent ambient, are recognized as imperfectly expanded turbulent jet. Steady-state imperfectly expanded jet flow has been already studied analytically; however, the transient flow has not been thoroughly studied. In the present study, the transient imperfectly expanded jet flow with focus on fuel spray in combustion is investigated analytically employing two-step separation of variables method and Fourier-Bessel expansion. The results are validated using available experimental data. The effects of different parameters such as eddy viscosity and pressure ratio on the behavior of the jet are studied. Results... 

    Analytical investigation of boundary layer growth and swirl intensity decay rate in a pipe

    , Article Archive of Applied Mechanics ; Volume 81, Issue 4 , 2011 , Pages 489-501 ; 09391533 (ISSN) Maddahian, R ; Kebriaee, A ; Farhanieh, B ; Firoozabadi, B ; Sharif University of Technology
    Abstract
    In this research, the developing turbulent swirling flow in the entrance region of a pipe is investigated analytically by using the boundary layer integral method. The governing equations are integrated through the boundary layer and obtained differential equations are solved with forth-order Adams predictor-corrector method. The general tangential velocity is applied at the inlet region to consider both free and forced vortex velocity profiles. The comparison between present model and available experimental data demonstrates the capability of the model in predicting boundary layer parameters (e.g. boundary layer growth, shear rate and swirl intensity decay rate). Analytical results showed... 

    Utility accrual dynamic routing in real-time parallel systems

    , Article IEEE Transactions on Parallel and Distributed Systems ; Volume 21, Issue 12 , March , 2010 , Pages 1822-1835 ; 10459219 (ISSN) Kargahi, M ; Movaghar, A ; Sharif University of Technology
    2010
    Abstract
    One of the main properties of today's distributed and parallel systems, such as mobile ad-hoc networks and grids, is their heterogeneity in the available resources. Further, many applications of such systems are subject to Time/Utility Function (TUF) time constraints for jobs, unavoidable variability in job characteristics and arrivals, and statistical assurance requirements on timeliness behaviors. In this paper, we propose an exact analytical solution for performance evaluation of dynamic policies used for routing of TUF-constrained Firm Real-Time (FRT) jobs among parallel single-processor queues with arbitrary processing rates and capacities. The analytical method can be used for the... 

    Application of homotopy-Pade technique in limit analysis of circular plates under arbitrary rotational symmetric loading using von-Mises yield criterion

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 15, Issue 4 , 2010 , Pages 1080-1091 ; 10075704 (ISSN) Kargarnovin, M. H ; Faghidian, S. A ; Farjami, Y ; Farrahi, G. H ; Sharif University of Technology
    Abstract
    The upper and lower bound principals of limit analysis are employed to determine the critical loading on solid circular plate with simply supported boundary conditions and subjected to any distributed loading with rotational symmetry. In this study, material behavior follows a rigid perfectly plastic model and yielding obeys the von-Mises criterion. Homotopy analysis method is employed to achieve the analytical solution to the high nonlinear ordinary differential equations governing the problem. This analytic solution has been obtained in terms of convergent series with easily computable terms. The results are verified with the Tresca yield criterion and presented as plots to show the... 

    Static pull-in analysis of electrostatically actuated microbeams using homotopy perturbation method

    , Article Applied Mathematical Modelling ; Volume 34, Issue 4 , 2010 , Pages 1032-1041 ; 0307904X (ISSN) Mojahedi, M ; Moghimi Zand, M ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    In this study, static pull-in instability of electrostatically-actuated microbridges and microcantilevers is investigated considering different nonlinear effects. Galerkin's decomposition method is utilized to convert the nonlinear differential equations of motion to nonlinear integro-algebraic equations. Afterward, analytic solutions to static deflections of the microbeams are obtained using the homotopy perturbation method. Results are in excellent agreement with those presented in the literature  

    Analytical solution of chamber effective length in the axial engine

    , Article Proceedings of the ASME Fluids Engineering Division Summer Conference 2009, FEDSM2009, 2 August 2009 through 6 August 2009, Vail, CO ; Volume 1, Issue PART B , 2009 , Pages 881-888 ; 9780791843727 (ISBN) Dehghani, S. R ; Mozafari, A. A ; Saidi, M. H ; Ghafourian, A ; Sharif University of Technology
    Abstract
    In this research, effective length of one-dimensional combustion in a dilute monopropellant spray, constant area and fixed volume chamber is analytically predicted. A new evaporation rate in the form of d k+1 relation is introduced. In the case of controlling vaporization by radiative heat transfer, k is equal to zero, and when molecular processes control the vaporization, k will be equal to one and in some cases vaporization data need the value of k greater than one to fit properly to related equation. Development of this approach can be used in the design of combustion chambers with optimum length and with using vaporization rate of R = R0〈r〉 0 k/〈r〉k. Spray equation and distribution... 

    An optimal analytical solution for maximizing expected battery lifetime using the calculus of variations

    , Article Integration ; Volume 71 , March , 2020 , Pages 86-94 Jafari Nodoushan, M ; Ejlali, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The exponential growth in the semiconductor industry and hence the increase in chip complexity, has led to more power usage and power density in modern processors. On the other hand, most of today's embedded systems are battery-powered, so the power consumption is one of the most critical criteria in these systems. Dynamic Voltage and Frequency Scaling (DVFS) is known as one of the most effective energy-saving methods. In this paper, we propose the optimal DVFS profile to minimize the energy consumption of a battery-based system with uncertain task execution time under deadline constraints using the Calculus of Variations (CoV). The contribution of this work is to analytically calculate the... 

    Tree-dimensional Free Vibration of Nano-Composite Plates with Arbitrary Geometry within Couple Stress Theory

    , M.Sc. Thesis Sharif University of Technology Forouzan, Bahareh (Author) ; Mohammadi Shoja, Hossein (Supervisor)
    Abstract
    Based on Hamilton’s principle, a three-dimensional semi-analytical method for the analysis of free vibration of a nano-composite plate within the couple stress theory is developed. Computation of dynamic behavior as well as natural frequencies and mode shapes is interested. In this method, the mechanical displacement functions, in each layer, are defined as product of a base function and a three-dimensional polynomial with unknown coefficients. The base functions are defined with respect to the kinematical boundary condition and the domain geometry. The mode shapes will be obtained and the accuracy of the present approach is demonstrated by comparison it in both classical elasticity and... 

    Study of Surface Evaporation Currents Due to Wind-Induced in Aquatic Canopy Areaswith Floating Vegetation

    , M.Sc. Thesis Sharif University of Technology Heshmati Far, Amir (Author) ; Jamali, Mirmosaddegh (Supervisor)
    Abstract
    The aquatic canopy areas such as wetlands play an important role in ecology of these area. The exchange flow between open water and vegetated area occurs due to sunlight and surface cooling. Wind also causes surface evaporation and create a cold layer at the surface of water. The creation of exchange flow and its magnitude depends on parameters like solid volume fraction and thermal gradient. In this thesis, the goal is to determine the effects of floating vegetation on the hydrodynamic characteristics of exchange flowas a result of surface cooling experimentally. In this research, the PIV method was used to measure velocity profiles. In the experiments, solid volume fraction, depth of... 

    Obtaining a Semi-analytical Solution for Contaminant Transport in Coastal Aquifers: Fourier-galerkin Method

    , M.Sc. Thesis Sharif University of Technology Koohbor, Behshad (Author) ; Ataie-Ashtiani, Behzad (Supervisor) ; Jamali, Mirmosaddegh (Co-Advisor)
    Abstract
    Existing closed form solutions of contaminant transport problems are limited by the mathematically convenient assumption of uniform flow. These solutions cannot be applied for coastal aquifers where seawater intrusion induces a variable velocity field. The Fourier series method is adapted to obtain a semi-analytical solution for contaminant transport in confined coastal aquifer in which the saltwater wedge is in equilibrium with a freshwater discharge flow. The developed method can be applied for different scenarios of contamination. Two scenarios dealing with, respectively, contaminant leakage from a source at the aquifer top surface and aquifer contamination from the landward boundary are... 

    Development of a Meta-heuristic Algorithm based on Chemotherapy Science

    , Ph.D. Dissertation Sharif University of Technology Salmani, Mohammad Hassan (Author) ; Eshghi, Kourosh (Supervisor)
    Abstract
    Among scientific fields of study, mathematical programming has high status and its importance has led researchers to develop accurate models and effective solving approaches to addressing optimization problems. In particular, meta-heuristic algorithms are approximate methods for solving optimization problems whereby good (not necessarily optimum) solutions can be generated via their implementation. In this study, we propose a population-based meta-heuristic algorithm according to chemotherapy method to cure cancers that mainly search the infeasible region. As in chemotherapy, Chemotherapy Science Algorithm (CSA) tries to kill inappropriate solutions (cancers and bad cells of the human body);... 

    Upscaling and Simulation of Two-Phase Flow in Porous Media

    , Ph.D. Dissertation Sharif University of Technology Khoozan, Davood (Author) ; Firoozabadi, Bahar (Supervisor)
    Abstract
    Advanced reservoir characterization methods can yield geological models at a very fine resolution, containing 1011-1018 cells while the common reservoir simulators can handle much fewer numbers of cells due to computer hardware limitations. The process of coarsening the fine-scale model to simulation models is known as upscaling. There are three fundamental steps in the procedure of upscaling, i.e. defining the coarse grid geometry, calculating the average properties for the generated coarse grid and simulation of the two-phase flow equations on the generated coarse-scale model. In this thesis, the focus will be on investigating the applicability of optimization in the context of coarse grid... 

    Nonlinear Forced Vibrations of Thin Circular and Elliptical Functionally Graded Plates

    , M.Sc. Thesis Sharif University of Technology Ghaheri, Ali (Author) ; Nosier, Asghar (Supervisor)
    Abstract
    Nonlinear forced vibrations of thin functionally graded circular and elliptical plates under classical boundary conditions are investigated based on the classical plate theory. The von Kármán strain-displacement relations is employed to include geometrical nonlinearity caused by large transverse displacements of the plate thickness order, and modal expansion in polar and elliptical coordinate along with the perturbation method of multiple scale is used to solve the governing equations. The material properties are graded through the plate thickness according to a power-law distribution of the volume fraction of the constituents. Transverse forcing is supposed to be harmonic with angular... 

    Experimental and Analytical Investigation of Bio-fuels Blends in the Direct Injection Engine

    , Ph.D. Dissertation Sharif University of Technology Ghahremani, Amir Reza (Author) ; Saeedi, Mohammad Hassan (Supervisor) ; Mozaffari, Ali Asghar (Co-Advisor) ; Hajinezhad, Ahmad (Co-Advisor)
    Abstract
    The growing use of fossil fuels and their impacts on the environmental pollution, mostly originating from internal combustion engines, is one of the important issues in environmentally friendly energy management. One of the key solutions to improve engine performance and reduce exhaust emissions of internal combustion engines is direct injection of bio-fuels. In this regard, in the present study some new biofuels such as Bio-Norouzak, Modified Bio-Ethanol (MBE), and Modified Bio-Diesel (MBF) have been introduced and effects of different parameters on their sprays have been investigated experimentally and analytically. The literature survey shows there is not any comprehensive study on the... 

    Submitted to the Department of Mechanical Engineering in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in Mechanical Engineering

    , Ph.D. Dissertation Sharif University of Technology Taati, Ehsan (Author) ; Asghari, Mohsen (Supervisor) ; Fallah Rajabzadeh, Famida (Supervisor)
    Abstract
    Circular cylindrical shells have been widely used in many engineering structures such as spacecraft, submarines, offshores, and storage tanks. Their high stiffness-to-weight ratio and load-carrying capability make them well suited for use in civil and aerospace structures. The consecutive development of material engineering along with the increasing demands for lightweight, heat-resistant, and high strength structures have led to the usage of advanced materials namely functionally graded (FG) materials in designing such structures. In this thesis, the nonlinear static analysis of thin FG cylindrical shells is carried out using the Donnell’s shell theory with first-order approximation and the... 

    Numerical Investigation of Motion of Droplets in Micro and Nanochannels

    , M.Sc. Thesis Sharif University of Technology Bedram, Ahmad (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    In this research, droplet motion in symmetric and asymmetric junctions in micro and nano scales was investigated. Droplets motion in symmetric and asymmetric junctions have many applications in many industries such as chemical and pharmacy. In this research symmetric T-junction in micro and nano sizes was simulated numerically in 2D and 3D formes. Also asymmetric T-junction (with unequal width branches) was simulated numerically in two cases, 2D and 3D. In the asymmetric T-junction, also an analyrical theory was developed. Numerical simulation was performed by using VOF techniqe and analytical theory was developed by thin film theory. For verifying the accuracy of numerical solution, grid...