Loading...
Search for: analytic-solutions
0.008 seconds
Total 185 records

    Tracer transport in naturally fractured reservoirs: Analytical solutions for a system of parallel fractures

    , Article International Journal of Heat and Mass Transfer ; Volume 103 , 2016 , Pages 627-634 ; 00179310 (ISSN) Abbasi, M ; Hossieni, M ; Izadmehr, M ; Sharifi, M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In naturally fractured reservoirs, modeling of mass transfer between matrix blocks and fractures is an important subject during gas injection or contaminant transport. This study focuses on developing an exact analytical solution to transient tracer transport problem along a discrete fracture in a porous rock matrix. Using Gauss-Legendre quadrature, an expression was obtained in the form of a double integral which is considered as the general transient solution. This solution has the ability to account the following phenomena: advective transport in fractures and molecular diffusion from the fracture to the matrix block. Certain assumptions are made which allow the problem to be formulated... 

    Analytical solutions for thermo-fluidic transport in electroosmotic flow through rough microtubes

    , Article International Journal of Heat and Mass Transfer ; Volume 92 , 2016 , Pages 244-251 ; 00179310 (ISSN) Keramati, H ; Sadeghi, A ; Saidi, M. H ; Chakraborty, S ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    The limitations of the microfabrication technology do not allow producing perfectly smooth microchannels. Hence, exploring the influences of roughness on transport phenomena in microtubes is of great importance to the scientific community. In the present work, consideration is given toward the corrugated roughness effects on fully developed electroosmotic flow and heat transfer in circular microtubes. Analytical solutions based on perturbation technique are presented for the problem assuming a low zeta potential under the constant heat flux boundary condition of the first kind. It is revealed that higher values of the corrugation number and relative roughness give rise to smaller Nusselt... 

    Geometry effect on electrokinetic flow and ionic conductance in pH-regulated nanochannels

    , Article Physics of Fluids ; Volume 29, Issue 12 , 2017 ; 10706631 (ISSN) Sadeghi, M ; Saidi, M. H ; Moosavi, A ; Sadeghi, A ; Sharif University of Technology
    Abstract
    Semi-analytical solutions are obtained for the electrical potential, electroosmotic velocity, ionic conductance, and surface physicochemical properties associated with long pH-regulated nanochannels of arbitrary but constant cross-sectional area. The effects of electric double layer overlap, multiple ionic species, and surface association/dissociation reactions are all taken into account, assuming low surface potentials. The method of analysis includes series solutions which the pertinent coefficients are obtained by applying the wall boundary conditions using either of the least-squares or point matching techniques. Although the procedure is general enough to be applied to almost any... 

    Analysis of wideband circularly polarized ferrite-loaded antenna based on unidirectional resonant modes

    , Article IEEE Transactions on Magnetics ; Volume 53, Issue 9 , 2017 ; 00189464 (ISSN) Mashhadi, M ; Rejaei, B ; Komjani, N ; Ghalibafan, J ; Sharif University of Technology
    Abstract
    We propose a wideband circularly polarized antenna that consists of a metallic patch and some parasitically coupled elements mounted on a grounded dielectric-ferrite substrate. The metallic patch is fed by a proximity-coupled feed line placed between the ferrite and the dielectric layers. The parasitically coupled elements are included to improve the impedance bandwidth of antenna and are excited through the metallic patch. The antenna utilizes the resonant modes of the structure, which rotate only in the clockwise or counter-clockwise direction. A semi-Analytical solution based on the magnetic wall approximation shows that the resonance frequencies of the clock-and counter-clockwise... 

    Semi-analytical prediction of macroscopic characteristics of open-end pressure-swirl injector

    , Article Aerospace Science and Technology ; Volume 82-83 , 2018 , Pages 32-37 ; 12709638 (ISSN) Kebriaee, A ; Olyaei, G ; Sharif University of Technology
    Elsevier Masson SAS  2018
    Abstract
    After proposing a semi-analytical solution for swirl laminar flow, macroscopic characteristics of open-end pressure-swirl injector including discharge coefficient and spray cone angle are calculated. In the presence of air core of the axial region inside the injector, the laminar rotational flow equations are simplified, and with the assumption of the quasi-developed axial flow along the nozzle, the equations are iteratively solved employing separation of variables method. The accuracy of the proposed semi-analytical solution is compared by some numerical and experimental results on an open-end injector. The validity of quasi-developed flow defined in the present work is confirmed based on... 

    On the use of COMSOL Multiphysics for seawater intrusion in fractured coastal aquifers

    , Article 25th Salt Water Intrusion Meeting, SWIM 2018, 17 June 2018 through 22 June 2018 ; Volume 54 , 2018 ; 22671242 (ISSN) Mozafari, B ; Fahs, M ; Ataie Ashtiani, B ; Simmons, C. T ; Younes, R ; Sharif University of Technology
    EDP Sciences  2018
    Abstract
    COMSOL Multiphysics is a comprehensive simulation software environment for a wide range of applications. COMSOL has an interactive interface that facilitates the modeling procedure and allows an easy coupling of different physical processes. The Subsurface Flow module extends the COMSOL modeling environment to applications related to fluid flow in saturated and variably saturated porous media. COMSOL is increasingly used in the investigation of geophysical, hydrogeological and environmental phenomena. The main goal of this work is to explore the ability of COMSOL for simulating seawater intrusion (SWI) in fractured coastal aquifers. Numerical modeling of such a problem is of high interest as... 

    Fourier series solution for an anisotropic and layered configuration of the dispersive Henry Problem

    , Article 25th Salt Water Intrusion Meeting, SWIM 2018, 17 June 2018 through 22 June 2018 ; Volume 54 , 2018 ; 22671242 (ISSN) Koohbor, B ; Fahs, M ; Belfort, B ; Ataie Ashtiani, B ; Simmons, C. T ; Sharif University of Technology
    EDP Sciences  2018
    Abstract
    Henry Problem (HP) still plays an important role in benchmarking numerical models of seawater intrusion (SWI) as well as being applied to practical and managerial purposes. The popularity of this problem is due to having a closed-form semi-analytical (SA) solution. The early SA solutions obtained for HP were limited to extensive assumptions that restrict its application in practical works. Several further studies expended the generality of the solution by assuming lower diffusion coefficients or including velocity-dependent dispersion in the results. However, all these studies are limited to homogeneous and isotropic domains. The present work made an attempt to improve the reality of the SA... 

    On the nonlinear dynamics of trolling-mode AFM: analytical solution using multiple time scales method

    , Article Journal of Sound and Vibration ; Volume 423 , 9 June , 2018 , Pages 263-286 ; 0022460X (ISSN) Sajjadi, M. R ; Nejat Pishkenari, H ; Vossoughi, G ; Sharif University of Technology
    Academic Press  2018
    Abstract
    Trolling mode atomic force microscopy (TR-AFM) has resolved many imaging problems by a considerable reduction of the liquid-resonator interaction forces in liquid environments. The present study develops a nonlinear model of the meniscus force exerted to the nanoneedle of TR-AFM and presents an analytical solution to the distributed-parameter model of TR-AFM resonator utilizing multiple time scales (MTS) method. Based on the developed analytical solution, the frequency-response curves of the resonator operation in air and liquid (for different penetration length of the nanoneedle) are obtained. The closed-form analytical solution and the frequency-response curves are validated by the... 

    Pull-in behavior of functionally graded micro/nano-beams for MEMS and NEMS switches

    , Article Microsystem Technologies ; 2018 ; 09467076 (ISSN) Haghshenas Gorgani, H ; Mahdavi Adeli, M ; Hosseini, M ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    In this paper, pull-in behavior of cantilever micro/nano-beams made of functionally graded materials (FGM) with small-scale effects under electrostatic force is investigated. Consistent couple stress theory is employed to study the influence of small-scale on pull-in behavior. According to this theory, the couple tensor is skew-symmetric by adopting the skew-symmetric part of the rotation gradients. The material properties except Poisson’s ratio obey the power law distribution in the thickness direction. The approximate analytical solutions for the pull-in voltage and pull-in displacement of the microbeams are derived using the Rayleigh–Ritz method. Comparison between the results of the... 

    Solute dispersion by electroosmotic flow through soft microchannels

    , Article Sensors and Actuators, B: Chemical ; Volume 255, Part 3 , February , 2018 , Pages 3585-3600 ; 09254005 (ISSN) Hoshyargar, V ; Khorami, A ; Ashrafizadeh, S. N ; Sadeghi, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    We study the hydrodynamic dispersion (HD) by electroosmotic flow in soft microchannels. Considering a fully developed flow in a slit microchannel of low surface potential and adopting the Taylor dispersion theory, we derive analytical solutions for the solute concentration field and the effective dispersion coefficient. We also conduct numerical analyses to broaden the paper's scope to high surface potentials and to specify a criterion for the validity of the Debye-Hückel linearization in soft microconduits as well as to investigate the broadening of an analyte band from the time of injection. It is demonstrated that the effective dispersion coefficient of a neutral solute band is generally... 

    A new analytical shear-lag based model for prediction of the steady state creep deformations of some short fiber composites

    , Article Materials and Design ; Volume 30, Issue 4 , 2009 , Pages 1075-1084 ; 02641275 (ISSN) Mondali, M ; Abedian, A ; Ghavami, A ; Sharif University of Technology
    2009
    Abstract
    A new analytical model based on the shear-lag theory is developed for stress analysis and prediction of the steady state creep deformation of short fiber composites subjected to an applied axial load. A perfect fiber/matrix interface is assumed and the steady state creep behavior of the matrix is described by an exponential law. The results obtained from the proposed analytical solution satisfy the equilibrium and constitutive creep equations. These analytical results are then validated by the FEM modeling. Interestingly, good agreements are found between the analytical and numerical predictions for all the stress and displacement rate components. © 2008 Elsevier Ltd. All rights reserved  

    Solution of the falkner-skan equation for wedge by adomian decomposition method

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 14, Issue 3 , 2009 , Pages 724-733 ; 10075704 (ISSN) Alizadeh, E ; Farhadi, M ; Sedighi, K ; Ebrahimi Kebria, H. R ; Ghafourian, A ; Sharif University of Technology
    2009
    Abstract
    The Adomian Decomposition Method is employed in the solution of the two dimensional laminar boundary layer of Falkner-Skan equation for wedge. This work aims at the solution of momentum equation in the case of accelerated flow and decelerated flow with separation. The Adomian Decomposition Method is provided an analytical solution in the form of an infinite power series. The effect of Adomian polynomials terms is considered on accuracy of the results. The velocity profiles in boundary layer are obtained. Results show a good accuracy compared to the exact solution. © 2007 Elsevier B.V. All rights reserved  

    Reconstruction of residual stresses in autofrettaged thick-walled tubes from limited measurements

    , Article International Journal of Pressure Vessels and Piping ; Volume 86, Issue 11 , 2009 , Pages 777-784 ; 03080161 (ISSN) Farrahi, G. H ; Faghidian, A ; Smith, D. J ; Sharif University of Technology
    2009
    Abstract
    An analytical method for reconstructing residual stresses within axisymmetric cylinders is presented. The method uses the stress equilibrium and boundary conditions together with an Airy stress function that satisfies these conditions. The method allows the reconstruction of residual stresses from limited measurements. The analysis is also coupled to a least squares approximation and a regularization analysis to provide stability of the inverse problem. The application of the method is demonstrated for four cases; two correspond to analytical solutions for residual stresses created during autofrettage and two sets of experimental results for through wall measurements of residual stresses. In... 

    Application of homotopy analysis method in studying dynamic pull-in instability of microsystems

    , Article Mechanics Research Communications ; Volume 36, Issue 7 , 2009 , Pages 851-858 ; 00936413 (ISSN) Moghimi Zand, M ; Ahmadian, M. T ; Sharif University of Technology
    2009
    Abstract
    In this study, homotopy analysis method is used to derive analytic solutions to predict dynamic pull-in instability of electrostatically-actuated microsystems. The model considers midplane stretching, initial stress, distributed electrostatic force and fringing fields effect. Influences of different parameters on dynamic pull-in instability are investigated. Results are in good agreement with numerical and experimental findings. © 2009 Elsevier Ltd. All rights reserved  

    Pull-in behavior of functionally graded micro/nano-beams for MEMS and NEMS switches

    , Article Microsystem Technologies ; Volume 25, Issue 8 , 2019 , Pages 3165-3173 ; 09467076 (ISSN) Haghshenas Gorgani, H ; Mahdavi Adeli, M ; Hosseini, M ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    In this paper, pull-in behavior of cantilever micro/nano-beams made of functionally graded materials (FGM) with small-scale effects under electrostatic force is investigated. Consistent couple stress theory is employed to study the influence of small-scale on pull-in behavior. According to this theory, the couple tensor is skew-symmetric by adopting the skew-symmetric part of the rotation gradients. The material properties except Poisson’s ratio obey the power law distribution in the thickness direction. The approximate analytical solutions for the pull-in voltage and pull-in displacement of the microbeams are derived using the Rayleigh–Ritz method. Comparison between the results of the... 

    Interaction of a screw dislocation and an embedded nonuniformly coated circular fiber with imperfect interfaces

    , Article International Journal of Solids and Structures ; Volume 182-183 , 2020 , Pages 295-306 Kamali, M. T ; Shodja, H. M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The eccentricity between the circular fiber and its coating as well as the imperfection at the fiber-coating-matrix interfaces associated with certain composites can have a remarkable effect on the movement of a dislocation. For an in-depth understanding of such phenomena, the present work provides an exact analytical solution for the interaction between an eccentrically coated circular inhomogeneity embedded in an infinite elastic medium with imperfect interfaces and a screw dislocation. The dislocation may be located inside one of the regions: the core inhomogeneity, coating, or the matrix. The corresponding boundary value problem is solved by using conformal mapping and complex potential... 

    Analytical solution of temperature field in micro-Poiseiulle flow with constant wall temperature

    , Article 6th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2008, Darmstadt, 23 June 2008 through 25 June 2008 ; Issue PART B , 2008 , Pages 1371-1379 ; 0791848345 (ISBN); 9780791848340 (ISBN) Darbandi, M ; Safari Mohsenabad, S ; Vakilipour, S ; ASME ; Sharif University of Technology
    2008
    Abstract
    The analytical study of microchannels has been considered as a preliminary approach to alleviate the difficulties which are normally encountered in numerical and experimental studies. Among the analytical solutions, those with high robustness and low complexities are certainly more attractive. In this work, we present a theoretical approach to predict the temperature field in micro-Poiseuille channel flow with constant wall temperature. The use of power series method simplifies the solution in the current analytical approach. The current analytical derivations are examined for channels with both hot-wall and cold-wall conditions. The current solutions agree well with the numerical solutions... 

    Application of the homotopy perturbation method to linear and nonlinear fourth-order boundary value problems

    , Article Physica Scripta ; Volume 77, Issue 5 , 2008 ; 00318949 (ISSN) Roohi, E ; Rasi Marzabadi, F ; Farjami, Y ; Sharif University of Technology
    2008
    Abstract
    In this study, we applied the homotopy perturbation (HP) method for solving linear and nonlinear fourth-order boundary value problems. The analytical results of the boundary value problems have been obtained in terms of a convergent series with easily computable components. Comparisons between the results of the HP method and the analytical solution showed that this method gives very precise results with a few terms. In the implied HP method, some unknown parameters in the initial guess are introduced, which are identified after applying boundary conditions. This improvement results in higher accuracy. © 2008 The Royal Swedish Academy of Sciences  

    Robust independent and simultaneous position control of multiple magnetic microrobots by sliding mode controller

    , Article Mechatronics ; Volume 84 , 2022 ; 09574158 (ISSN) Khalesi, R ; Yousefi, M ; Nejat Pishkenari, H ; Vossoughi, G ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Recent development in technology and improvement of manufacturing tools have accelerated the use of microrobots (MRs) in numerous areas such as micro sensing and medical applications. The ability to control multiple MRs simultaneously and independently could lead to higher performance, and even make new applications possible. In this paper, we have proposed a system for simultaneous and independent control of the position of multiple MRs in a plane. The system consists of 2N permanent magnets (PMs) with a circular arrangement in the plane around the workspace and a pair of Helmholtz coil to control N MRs. PMs are rotated by servomotors, and the coil aligns the orientation of the MRs normal... 

    An exact analytical model for fluid flow through finite rock matrix block with special saturation function

    , Article Journal of Hydrology ; Volume 577 , 2019 ; 00221694 (ISSN) Izadmehr, M ; Abbasi, M ; Ghazanfari, M. H ; Sharifi, M ; Kazemi, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    An exact analytical solution for one-dimensional fluid flow through rock matrix block is presented. The nonlinearity induced from flow functions makes the governing equations describing this mechanism difficult to be analytically solved. In this paper, an analytical solution to the infiltration problems considering non-linear relative permeability functions is presented for finite depth, despite its profound and fundamental importance. Elimination of the nonlinear terms in the equation, as a complex and tedious task, is done by applying several successive mathematical manipulations including: Hopf-Cole transformation to obtain a diffusive type PDE; an exponential type transformation to get a...