Loading...
Search for: animal-model
0.011 seconds
Total 44 records

    Oral administration of lithium chloride ameliorate spinal cord injury-induced hyperalgesia in male rats

    , Article PharmaNutrition ; Volume 21 , 2022 ; 22134344 (ISSN) Rahimi, G ; Mirsadeghi, S ; Rahmani, S ; Izadi, A ; Ghodsi, Z ; Ghodsi, S. M ; Rahimi Movaghar, V ; Kiani, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Background: Numerous studies have described the neuroprotective effect of lithium in spinal cord injury in addition to its ameliorative impact on pain sensation. In the present study, we aim to examine the efficacy of 85 mg/kg as well as 50 mg/kg dosage of the lithium chloride (LiCl) through oral consumption in spinal cord injured rats and their effect on gene expression of three candidate genes, corresponding to the hyper-sensitization. Methods: Adult Wistar (male) rats were divided into four experimental groups: control; oral administration of LiCl with 85 mg/kg and 50 mg/kg dosage; and 10 % sucrose receiver as the vehicle. BBB and heat plantar tests were performed weekly throughout four... 

    A novel formulation of simvastatin nanoemulsion gel for infected wound therapy: In vitro and in vivo assessment

    , Article Journal of Drug Delivery Science and Technology ; Volume 72 , 2022 ; 17732247 (ISSN) Amoozegar, H ; Ghaffari, A ; Keramati, M ; Ahmadi, S ; Dizaji, S ; Moayer, F ; Akbarzadeh, I ; Abazari, M ; razzaghi abyaneh, M ; Bakhshandeh, H ; Sharif University of Technology
    Editions de Sante  2022
    Abstract
    Simvastatin, a well-known antihyperlipidemic drug, has antibacterial activity against a broad range of bacteria, especially Staphylococcus aureus. In present study, a nanoemulsion gel-based formulation containing Simvastatin was developed for infected wound therapy. Therefore, different formulations of Simvastatin nanoemulsion were prepared. Based on droplet size, polydispersity index and zeta potential, the best nanoemulsion formulation containing Simvastatin was selected for development of nanoemulsion gel formulation of drug using carbomer 934 as gelling agent. Thermodynamic stability of Simvastatin nanoemulsion was assessed at different conditions. The in vitro antibacterial activity... 

    Brain-on-a-chip: Recent advances in design and techniques for microfluidic models of the brain in health and disease

    , Article Biomaterials ; Volume 285 , 2022 ; 01429612 (ISSN) Amirifar, L ; Shamloo, A ; Nasiri, R ; de Barros, N. R ; Wang, Z. Z ; Unluturk, B. D ; Libanori, A ; Ievglevskyi, O ; Diltemiz, S. E ; Sances, S ; Balasingham, I ; Seidlits, S. K ; Ashammakhi, N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Recent advances in biomaterials, microfabrication, microfluidics, and cell biology have led to the development of organ-on-a-chip devices that can reproduce key functions of various organs. Such platforms promise to provide novel insights into various physiological events, including mechanisms of disease, and evaluate the effects of external interventions, such as drug administration. The neuroscience field is expected to benefit greatly from these innovative tools. Conventional ex vivo studies of the nervous system have been limited by the inability of cell culture to adequately mimic in vivo physiology. While animal models can be used, their relevance to human physiology is uncertain and... 

    Simvastatin-loaded nano-niosomes confer cardioprotection against myocardial ischemia/reperfusion injury

    , Article Drug Delivery and Translational Research ; Volume 12, Issue 6 , 2022 , Pages 1423-1432 ; 2190393X (ISSN) Naseroleslami, M ; Mousavi Niri , N ; Akbarzade, I ; Sharifi, M ; Aboutaleb, N ; Sharif University of Technology
    Springer  2022
    Abstract
    Although simvastatin (SIM) has been proven to be a powerful agent against myocardial ischemia/reperfusion (MI/R) injury, poor water solubility, short half-life, and low bioavailability have made it futile while using conventional drug delivery system. Hence, this study aims to investigate therapeutic efficacy of SIM-loaded nano-niosomes on MI/R injury. Surface active agent film hydration method was used to synthesize nano-niosomes. The physicochemical properties of nano-niosomes were characterized using dynamic light scattering (DLS) and transmission electron microscopy (TEM). Moreover, niosomes were characterized in entrapment efficiency (EE) and releasing pattern. Male Wistar rats were...