Loading...
Search for: anions
0.007 seconds

    The identification and performance assessment of dominant bacterial species during linear alkylbenzene sulfonate (LAS)-biodegradation in a bioelectrochemical system

    , Article Bioprocess and Biosystems Engineering ; Volume 44, Issue 12 , 2021 , Pages 2579-2590 ; 16157591 (ISSN) Askari, A ; Vahabzadeh, F ; Mardanpour, M. M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    The anionic surfactant linear alkylbenzene sulfonate (LAS) is a major chemical constituent of detergent formulation. Regarding the recalcitrant nature of sulfonoaromatic compounds, discharging these substances into wastewater collection systems is a real environmental issue. A study on LAS biodegradation based on bioelectrochemical treatment and in the form of developing a single-chamber microbial fuel cell with air cathode is reported in the present work. Pretreatment study showed LAS concentration of 60 ppm resulted in the highest anaerobic LAS removal of 57%; so, this concentration was chosen to run the MFC. After the sustained anodic biofilm was formed, LAS degradation rate during 4 days... 

    Investigation uncovered the impact of anions on CO2 absorption by low viscous ether functionalized pyridinium ionic liquids

    , Article Journal of Molecular Liquids ; Volume 336 , August , 2021 ; 01677322 (ISSN) Hossein, S ; Dong, H ; Zeng, S ; Umair Ahmad, M ; Khurum Shehzad, F ; Wu, H ; Zhang, Y ; Sharif University of Technology
    Elsevier B. V  2021
    Abstract
    Ionic liquids, which are designable and nonvolatile, have become a hot topic in the field of CO2 separation from industrial gases. In order to utilize the nonvolatile and low heat capacity of ionic liquids, it is necessary to solve the problem of high viscosity of pure ionic liquids. In the present study, ether functionalized pyridinium ion [E1Py]+ with good biodegradability and low viscosity was selected as cation. Ions containing cyano groups were used as anions, such as thiocyanate ion [SCN]-, dicyanamide ion [N(CN)2]-, tricyanomethanide ion [C(CN)3]-. Three ionic liquids with low viscosity were synthesized and characterized by 1HNMR, 13CNMR and FTIR. The physiochemical properties of... 

    Partially hydrolyzed crosslinked alginate-graff-polymethacrylamide as a novel biopolymer-based superabsorbent hydrogel having pH-responsive properties

    , Article Macromolecular Research ; Volume 13, Issue 1 , 2005 , Pages 45-53 ; 15985032 (ISSN) Pourjavadi, A ; Amini Fazl, M. S ; Hosseinzadeh, H ; Sharif University of Technology
    Polymer Society of Korea  2005
    Abstract
    In this study, a series of highly swelling hydrogels based on sodium alginate (NaAlg) and polymethacrylamide (PMAM) was prepared through free radical polymerization. The graft copolymerization reaction was performed in a homogeneous medium and in the presence of ammonium persulfate (APS) as an initiator and N,N'-methylenebisacrylamide (MBA) as a crosslinker. The crosslinked graft copolymer, alginate-graft-polymethacrylamide (Alg-g-PMAM), was then partially hydrolyzed by NaOH solution to yield a hydrogel, hydrolyzed alginate-graft-polymethacrylamide (H-Alg-g-PMAM). During alkaline hydrolysis, the carboxamide groups of Alg-g-PMAM were converted into hydrophilic carboxylate anions. Either the... 

    Efficient removal of some anionic dyes from aqueous solution using a polymer-coated magnetic nano-adsorbent

    , Article Journal of Water Supply: Research and Technology - AQUA ; Volume 66, Issue 4 , 2017 , Pages 239-248 ; 00037214 (ISSN) Kiani, A ; Haratipour, P ; Ahmadi, M ; Zare Dorabei, R ; Mahmoodi, A ; Sharif University of Technology
    Abstract
    For the efficient removal of some anionic dyes, a novel adsorbent was developed. The adsorbent was prepared by coating a synthetic polymer on magnetite nanosphere surface as a magnetic carrier. The synthesized nano-adsorbent was fully characterized using Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer, X-ray diffractometer, scanning electron microscope, and transmission electronic microscopy measurements. The synthesized nano-adsorbent showed high adsorption capacity towards removal of some anionic dyes (221.4, 201.6, and 135.3 mg g-1 for reactive red 195, reactive yellow 145, and reactive blue 19 dye, respectively) from aqueous samples. The dye adsorption was... 

    Ultrafast and simultaneous removal of anionic and cationic dyes by nanodiamond/UiO-66 hybrid nanocomposite

    , Article Chemosphere ; Volume 247 , May , 2020 Molavi, H ; Neshastehgar, M ; Shojaei, A ; Ghashghaeinejad, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this research, UiO-66 and its composite nanoparticles with thermally oxidized nanodiamond (OND) were synthesized via a simple solvothermal method and utilized as solid adsorbent for the removal of anionic methyl red (MR) dye and cationic malachite green (MG) dye from contaminated water. The synthesized adsorbents were analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), N2 adsorption–desorption, and zeta potential analyzer. The influences of various factors such as initial concentrations of the dyes, adsorption process time, solution pH, solution temperature and ionic... 

    Delafossite-alumina nanocomposite for enhanced catalytic wet peroxide oxidation of anionic pollutants

    , Article Journal of Hazardous Materials ; Volume 417 , 2021 ; 03043894 (ISSN) Nazari, P ; Nouri, O ; Xie, Z ; Setayesh, S. R ; Wei, Z ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Mass transfer efficiency and catalytic reactivity are the two major hurdles for heterogeneous catalytic wet peroxide oxidation (CWPO) technologies. To address these issues, nanocomposite CuFeO2/Al2O3 was synthesized and assessed as a novel catalyst for enhanced adsorption and oxidation of anionic pollutants (catechol and reactive red 195 (RR195)) in waters. With a positive charge on the nanocomposite by introducing Al2O3, the adsorption of anionic pollutants was promoted. The surface complexation reaction on CuFeO2/Al2O3, which fits well to the Langmuir isotherm, has engined the mass transfer of pollutants to the nanocatalyst that demonstrated 96.46% and 99.75% removal of catechol and RR195... 

    Doctor-Blade Printing of The Absorber Layer of Mixed-Cation and anion Perovskite Solar Cells in Ambient Air

    , M.Sc. Thesis Sharif University of Technology Rahbari, Hamed (Author) ; Nemati, Ali (Supervisor) ; Taghavinia, Nima (Co-Supervisor)
    Abstract
    In just a decade, perovskite solar cells have emerged as the next generation of photovoltaic technologies due to their high efficiency, low manufacturing cost, and easy fabrication methods compared to silicon solar cells. To date, highly efficient perovskite cells (with an efficiency of approximately 25.5%) have been fabricated on small substrates by a spin-coating process. In the spin coating process, perovskite precursor is spread on the substrate through shear force. However, the reproducibility of the cells coated with this method varies between research laboratories. Furthermore, since the solution is wasted during the deposition of the perovskite precursor on large substrates, a... 

    The impacts of aqueous ions on interfacial tension and wettability of an asphaltenic-acidic crude oil reservoir during smart water injection

    , Article Journal of Chemical and Engineering Data ; Vol. 59, issue. 11 , 2014 , pp. 3624-3634 ; ISSN: 00219568 Lashkarbolooki, M ; Ayatollahi, S ; Riazi, M ; Sharif University of Technology
    Abstract
    The use of adjusted/optimized saline water categorized into two different classes namely smart water (SW) and low salinity (LoSal) water injection has been proposed for more oil recovery from specific types of oil reservoirs. There are possible mechanisms concerning SW flooding that have been proposed in the literature, some of them are still subject to more examination. In this study, an experimental investigation is performed to determine the influence of type and amount of salt to the surface properties including interfacial tension (IFT) and contact angle (CA) of aqueous solution + acidic and asphaltenic crude oil + carbonate rock systems. For this purpose, the concentration of different... 

    Glucose interaction with Au, Ag, and Cu clusters: Theoretical investigation

    , Article International Journal of Quantum Chemistry ; Volume 113, Issue 8 , 2013 , Pages 1062-1070 ; 00207608 (ISSN) Jamshidi, Z ; Farhangian, H ; Tehrani, Z. A ; Sharif University of Technology
    2013
    Abstract
    Interactions of α-D-glucose with gold, silver, and copper metal clusters are studied theoretically at the density functional theory (CAM-B3LYP) and MP2 levels of theory, using trimer clusters as simple catalytic models for metal particles as well as investigating the effect of cluster charge by studying the interactions of cationic and anionic gold clusters with glucose. The bonding between α-D-glucose and metal clusters occurs by two major bonding factors; the anchoring of M atoms (M = Cu, Ag, and Au) to the O atoms, and the unconventional M.H-O hydrogen bond. Depending on the charge of metal clusters, each of these bonds contributes significantly to the complexation. Binding energy... 

    Mixed protein-surfactant adsorption layers formed in a sequential and simultaneous way at water-air and water-oil interfaces

    , Article Soft Matter ; Volume 8, Issue 22 , 2012 , Pages 6057-6065 ; 1744683X (ISSN) Dan, A ; Kotsmar, C ; Ferri, J. K ; Javadi, A ; Karbaschi, M ; Krägel, J ; Wüstneck, R ; Miller, R ; Sharif University of Technology
    2012
    Abstract
    Mixed protein-surfactant adsorption layers can be built up in two different ways. The classical way is when all components adsorb simultaneously from a mixed solution. Alternatively, the components adsorb one after another, i.e. in a sequential way. In the present work, the formation of such surface layers has been studied with the random coil protein β-casein in the presence of added anionic surfactant SDS and compared for two different interfaces: the water-air (W-A) and water-hexane (W-H) interfaces. The used experimental technique is a drop profile analysis tensiometer PAT-1 specially equipped with a coaxial double capillary for drop volume exchange during the experiments. The results... 

    Experimental investigation of asp flooding in fractured heavy oil five-spot systems

    , Article 74th European Association of Geoscientists and Engineers Conference and Exhibition 2012 Incorporating SPE EUROPEC 2012: Responsibly Securing Natural Resources, 4 June 2012 through 7 June 2012 ; 2012 , Pages 3924-3928 ; 9781629937908 (ISBN) Sedaghat, M. H ; Ghazanfari, M. H ; Masihi, M ; Rashtchian, D ; Sharif University of Technology
    European Association of Geoscientists and Engineers, EAGE  2012
    Abstract
    Although alkaline-surfactant-polymer flooding is proved to be efficient for oil recovery from heavy oil reservoirs, the displacements mechanism/efficiency of this process in fractured systems needs to more discussion, especially in five-spot patterns. In this work, several ASP flooding test were performed on fractured micromodels which were initially saturated with heavy oil at constant flow rate and different fracture geometrical characteristics conditions. The ASP solutions are constituted from 5 polymers i.e. four synthetic polymers include three hydrolyzed polyacrylamide with different molecular weight as well as a non-hydrolyzed polyacrylamide and a biopolymer, 2 surfactants i.e. a... 

    On the formation of SWCNTs and MWCNTs by arc-discharge in aqueous solutions: The role of iron charge and counter ions

    , Article Fullerenes Nanotubes and Carbon Nanostructures ; Volume 19, Issue 4 , 2011 , Pages 317-328 ; 1536383X (ISSN) Gheytani, S ; Shervin, S. H ; Simchi, A ; Sharif University of Technology
    Abstract
    Single-walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs) were synthesized in aqueous solutions containing FeCl2, FeCl3, FeSO4 and Fe2(SO4) 3. The effects of iron charge and the counter ions on the formation of carbon nanotubes (CNTs) were investigated. Thermogravimetric (TG) analysis indicated that carbon multilayer structures including CNTs and multishell graphite particles were formed in deionized (DI) water without the iron precursor. SWCNTs were also synthesized in the presence of the iron ions. It was also found that the mole ratio of [Fe2+]/[Fe3+] in the solution has a significant influence on the purity of CNTs and the process yield. The highest yield was... 

    Rheology, stability and filtration characteristics of colloidal gas aphron fluids: role of surfactant and polymer type

    , Article Journal of Natural Gas Science and Engineering ; Volume 26 , September , 2015 , Pages 895-906 ; 18755100 (ISSN) Tabzar, A ; Arabloo, M ; Ghazanfari, M. H ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Colloidal Gas Aphron (CGA) are finding increasing application in fields of science and engineering because of their distinctive characteristic. As interest in the application of CGA based fluids grows and in order to select the best procedure for using them in successful petroleum engineering operations, there is a need to gain a better understanding of the factors that affect their properties and behavior. This article discusses the rheological characterization, stability analysis and filtration properties of CGA based fluids for three bio-polymers and two ionic surfactant. The stability and filtration analysis were investigated with the static drain rate technique and API filtration tests,... 

    Improvement in mechanical performance of anionic hydrogels using full-interpenetrating Polymer Network Reinforced with Graphene Oxide Nanosheets

    , Article Advances in Polymer Technology ; 2015 ; 07306679 (ISSN) Kheirabadi, M ; Bagheri, R ; Kabiri, K ; Ossipov, D. A ; Jokar, E ; Asadian, E ; Sharif University of Technology
    John Wiley and Sons Inc  2015
    Abstract
    Weak mechanical possession is one of the limiting factors in application of hydrogels. To modify this inherent disadvantage, different approaches have been studied including synthesizing interpenetrating polymer network (IPN) and nanocomposite hydrogels. So, this study has focused on preparation of a novel full-IPN structure based on anionic monomers of 2-acrylamido-2-methylpropane sulfonic acid/acrylic acid-sodium acrylate via facile solution polymerization technique in an aqueous media with incorporation of graphene oxide (GO) nanosheets. Mechanical performance of materials in the "as-prepared condition" and "swollen state" was characterized via tensile, compression, and rheology tests,... 

    Investigation and optimization of SDS and key parameters effect on the nickel electroless coatings properties by Taguchi method

    , Article Journal of Coatings Technology Research ; Volume 7, Issue 5 , 2010 , Pages 547-555 ; 15470091 (ISSN) Farzaneh, A ; Ehteshamzadeh, M ; Ghorbani, M ; Vazifeh Mehrabani, J ; Sharif University of Technology
    2010
    Abstract
    In this research, the influence of anionic surfactant sodium dodecyl sulfate (SDS), pH, substrate finishing, and annealing temperature on the surface morphology and hardness of the electroless nickel phosphorus (ENi-P) coatings were studied. Taguchi's experimental design method was used. Parameters selected in three levels and L9 from orthogonal robust array design were employed. Surface roughnesses of the deposits were measured using a stylus instrument. Scanning electron microscope and x-ray diffraction analysis were implemented to study surface morphologies and phase composition, respectively. Microhardness of the ENi-P deposits was measured using a microhardness tester at three trials... 

    Acidic heavy oil recovery using a new formulated surfactant accompanying alkali–polymer in high salinity brines

    , Article Journal of Surfactants and Detergents ; Volume 20, Issue 3 , 2017 , Pages 725-733 ; 10973958 (ISSN) Dehghan, A. A ; Jadaly, A ; Ayatollahi, S ; Masihi, M ; Sharif University of Technology
    Abstract
    The strength of a newly formulated surfactant with an alkali and polymer (AS/ASP) to improve an acidic heavy oil recovery was laboratory evaluated by various flooding experiments. The comparative role of the parameters like chemical nature, surface wettability, salinity, temperature and injection scheme were explored at high temperature and pressure on Berea sandstone rocks. According to the results the anionic surfactant is capable of providing proper oil displacement under high salinity conditions around 15 wt%. Continuous monitoring of differential pressure response and effluents’ state clearly represented the formation of an emulsified oil in high saline solutions with both alkali and... 

    The synergic effects of anionic and cationic chemical surfactants, and bacterial solution on wettability alteration of carbonate rock: an experimental investigation

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 513 , 2017 , Pages 422-429 ; 09277757 (ISSN) Hajibagheri, F ; Lashkarbolooki, M ; Ayatollahi, S ; Hashemi, A ; Sharif University of Technology
    Abstract
    Changing the wettability of reservoir rock towards strongly water-wet state is effective way to enhance oil recovery from fractured carbonate reservoirs which are typically oil-wet. Regarding this fact, the injection of surfactant and the bacterial solution as EOR agents is proposed in the current work as a potential method to alter the wettability of rock surface reservoir. Nevertheless, there is a definite lack of experimental data regarding this method and the synergistic effect of both chemical and bacterial solutions on this process. In this study, the sole and combined effects of the bacterial solution using an Enterobacter cloacae strain as a biosurfactant-producer are compared with... 

    Investigating the effects of pH, surfactant and ionic strength on the stability of alumina/water nanofluids using DLVO theory

    , Article Journal of Thermal Analysis and Calorimetry ; 2018 ; 13886150 (ISSN) Zareei, M ; Yoozbashizadeh, H ; Madaah Hosseini, H. R ; Sharif University of Technology
    Springer Netherlands  2018
    Abstract
    Alumina nanofluids are one of the most useful nanofluids. In order to evaluate the colloidal behavior of nanoparticles in alumina/water nanofluid, the influence of effective factors such as pH, ionic strength and surfactants, was studied. Zeta potential, particle size and turbidity change of each nanofluid was investigated. According to the results for 0.05, 0.1 and 0.2 mass% nanofluid, point of zero charge was obtained at pH values of 9.5, 10.2 and 10.5, respectively. The highest nanofluid stability occurred at pH 4 and its lowest was at pH 10. The anionic surfactant had a greater effect on the stability in compared with cationic and nonionic surfactants. By increasing in ionic strength,... 

    Comparison of thermochemistry of aspartame (artificial sweetener) and glucose

    , Article Carbohydrate Research ; Volume 344, Issue 1 , 2009 , Pages 127-133 ; 00086215 (ISSN) Rashidian, M ; Fattahi, A ; Sharif University of Technology
    2009
    Abstract
    We have compared the gas phase thermochemical properties of aspartame (artificial sweetener) and α- and β-glucose. These parameters include metal ion affinities with Li+-, Na+-, K+-, Mg+2-, Ca+2-, Fe+2-, Zn+2-ions, and chloride ion affinity by using DFT calculations. For example, for aspartame, the affinity values for the above described metal ions are, respectively, 86.5, 63.2, 44.2, 255.4, 178.4, 235.4, and 300.4, and for β-glucose are 65.2, 47.3 32.9, 212.9, 140.2, 190.1, and 250.0 kcal mol-1, respectively. The study shows differences between the intrinsic chemistry of aspartame and glucose. © 2008 Elsevier Ltd. All rights reserved  

    Investigating the effects of pH, surfactant and ionic strength on the stability of alumina/water nanofluids using DLVO theory

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 135, Issue 2 , 2019 , Pages 1185-1196 ; 13886150 (ISSN) Zareei, M ; Yoozbashizadeh, H ; Madaah Hosseini, H. R ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    Alumina nanofluids are one of the most useful nanofluids. In order to evaluate the colloidal behavior of nanoparticles in alumina/water nanofluid, the influence of effective factors such as pH, ionic strength and surfactants, was studied. Zeta potential, particle size and turbidity change of each nanofluid was investigated. According to the results for 0.05, 0.1 and 0.2 mass% nanofluid, point of zero charge was obtained at pH values of 9.5, 10.2 and 10.5, respectively. The highest nanofluid stability occurred at pH 4 and its lowest was at pH 10. The anionic surfactant had a greater effect on the stability in compared with cationic and nonionic surfactants. By increasing in ionic strength,...