Loading...
Search for: anodes
0.007 seconds
Total 164 records

    Anodizing behavior and electrochemical evaluation of accumulative roll bonded Al and Al-SiC composite

    , Article Surface and Coatings Technology ; Volume 408 , 2021 ; 02578972 (ISSN) Ebadi, M ; Alishavandi, M ; Paydar, M. H ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Accumulative roll bonded (ARBed) AA1050 and Al-2 vol% SiCp (AMC) samples were anodized in an H2SO4 electrolyte to improve corrosion resistance. The SEM images revealed that the anodic oxide's morphology is significantly dependent on the microstructure of the ARBed bare samples, owing to high internal energy that accelerates Al consumption during anodizing process. Potentiodynamic polarization measurements and EIS evaluation showed that anodic oxide improves the corrosion resistance of both ARBed AA and AMC samples; however, the electrochemical behavior of the processed samples changed due to the formation of a complex oxide structure comprising of twisted pore channels and attack routes. ©... 

    Effect of anode position on the incorporation of nano/microparticles during the PEO coating on AZ31B

    , Article Applied Surface Science Advances ; 2021 , Volume 6 ; 26665239 (ISSN) Esmaeili, M ; Asgari, M ; Daneshmand, H ; Karimi, M ; Sabour Rouhaghdam, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this study, the influence of the sample position (anode) on the incorporation of nano/micro alumina particles on the AZ31B magnesium alloy substrate was investigated by plasma electrolytic oxidation (PEO) coating. For characterized this effect, Scanning electron microscopy (SEM), potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), and pin-on-disk test were used to the evolution of the microstructure, corrosion resistance, and the wear behavior of the films. Based on the obtained results, the effect of the anode position from vertical to horizontal is dependent on particle size and it can be influenced only on the incorporation of nanoparticles. The... 

    Copper oxide@cobalt oxide core-shell nanostructure, as an efficient binder-free anode for lithium-ion batteries

    , Article Journal of Physics D: Applied Physics ; Volume 54, Issue 46 , 2021 ; 00223727 (ISSN) Jafaripour, H ; Dehghan, P ; Zare, A. M ; Sanaee, Z ; Ghasemi, S ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    Here, cobalt oxide nanostructures synthesized on vertically aligned copper oxide nanowires (NWs) have been investigated as a possible anode material for Lithium-ion batteries (LIBs). Copper oxide NWs were formed by thermal oxidation of electrochemically deposited copper on the stainless steel mesh substrate. The process used allows the formation of highly dense copper oxide NWs with excellent adhesion to the conductive current collector substrate. A simple hydrothermal method was implemented for the deposition of cobalt oxide nanostructures on the copper oxide NWs. The as-prepared binder-free copper oxide@cobalt oxide NWs electrode exhibits a high initial specific capacity of 460 mAh g-1 at... 

    Anodic pulse electrodeposition of mesoporous manganese dioxide nanostructures for high performance supercapacitors

    , Article Journal of Alloys and Compounds ; Volume 887 , 2021 ; 09258388 (ISSN) Mahdi, F ; Javanbakht, M ; Shahrokhian, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    A pseudocapacitive electrode based on mesoporous manganese dioxide (MnO2) was fabricated via the anodic pulse electrodeposition method. Pulse current (PC) has many parameters that affect the physicochemical and electrochemical properties of the material. PC parameters are generally divided into independent and dependent types. Independent pulse parameters consist of the time of applying current (ton), interval time with zero current (toff), and peak current density (Ip). Dependent pulse parameters include duty cycle (θ), frequency (f), and average current density (Ia). In this work, the changes of two independent parameters (ton and toff) at the constant Ip = 2 mA cm-2 on the anodic pulse... 

    A numerical simulation to effectively assess impacts of flow channels characteristics on solid oxide fuel cell performance

    , Article Energy Conversion and Management ; Volume 244 , 2021 ; 01968904 (ISSN) Mehdizadeh Chellehbari, Y ; Adavi, K ; Sayyad Amin, J ; Zendehboudi, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Solid oxide fuel cells (SOFCs) introduce a promising electrochemical conversion technology to generate electricity directly from fuel oxidization. A three-dimensional (3D) numerical model is proposed to evaluate the SOFC performance by employing computational fluid dynamics (CFD) approach based on the finite element method. This research includes simultaneously solving momentum, energy, and mass transport equations linked with the electrochemical reactions. First, the modeling results of a SOFC system with a rectangular channel in the absence of obstacles are compared with the experimental data, showing very good agreement. The effects of different shapes and numbers of obstacles on fuel... 

    Antimony doped SnO2 nanowire@C core–shell structure as a high-performance anode material for lithium-ion battery

    , Article Nanotechnology ; Volume 32, Issue 28 , 2021 ; 09574484 (ISSN) Mousavi, M ; Abolhassani, R ; Hosseini, M ; Akbarnejad, E ; Mojallal, M. H ; Ghasemi, S ; Mohajerzadeh, S ; Sanaee, Z ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    SnO2 is considered as one of the high specific capacity anode materials for Lithium-ion batteries. However, the low electrical conductivity of SnO2 limits its applications. This manuscript reports a simple and efficient approach for the synthesis of Sb-doped SnO2 nanowires (NWs) core and carbon shell structure which effectively enhances the electrical conductivity and electrochemical performance of SnO2 nanostructures. Sb doping was performed during the vapor-liquid-solid synthesis of SnO2 NWs in a horizontal furnace. Subsequently, carbon nanolayer was coated on the NWs using the DC Plasma Enhanced Chemical Vapor Deposition approach. The carbon-coated shell improves the Solid-Electrolyte... 

    Nickel-doped monoclinic WO3 as high performance anode material for rechargeable lithium ion battery

    , Article Journal of Electroanalytical Chemistry ; Volume 894 , 2021 ; 15726657 (ISSN) Rastgoo Deylami, M ; Javanbakht, M ; Omidvar, H ; Hooshyari, K ; Salarizadeh, P ; Askari, M. B ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The anode materials are one of the critical components in rechargeable lithium ion batteries (LIBs). The monoclinic tungsten trioxide (mWO3) is introduced as interesting anode electrode for LIBs due to its good structure for intercalation and de-intercalation of lithium ions, high abundance and various oxidation state of tungsten and etc. In this study, we prepare and investigate the effect of various amounts of nickel dopant on characteristics and electrochemical properties of the mWO3 as the anode electrode in a rechargeable LIB. The experimental investigations confirm that the number of nickel atoms has a remarkable effect on controlling spherical particle diameter, crystallite size, and... 

    Cycling performance of LiFePO4/graphite batteries and their degradation mechanism analysis via electrochemical and microscopic techniques

    , Article Ionics ; 2021 ; 09477047 (ISSN) Sharifi, H ; Mosallanejad, B ; Mohammadzad, M ; Hosseini Hosseinabad, S. M ; Ramakrishna, S ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this work, cycling-induced aging occurring in 18650-type LiFePO4/graphite full cells at different C-rates is studied extensively. The mechanism of performance degradation is investigated using a combination of electrochemical and microstructural analyses. Half-cell studies are carried out after dismantling the full cells, using fresh and cycled LiFePO4 cathode and graphite anode to independently study them. The results show that the capacity of LiFePO4 electrodes is significantly recovered. The rate of capacity fading in the discharge state considered as irreversible capacity in the graphite is higher than LiFePO4 half cells, indicating a greater degradation in the performance of this... 

    Facile synthesis and simulation of MnO2 nanoflakes on vertically aligned carbon nanotubes, as a high-performance electrode for Li-ion battery and supercapacitor

    , Article Electrochimica Acta ; Volume 390 , 2021 ; 00134686 (ISSN) Abdollahi, A ; Abnavi, A ; Ghasemi, F ; Ghasemi, S ; Sanaee, Z ; Mohajerzadeh, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study reports the successful fabrication of high-performance flexible binder-free lithium-ion battery anode and supercapacitor based on the synthesis of 3D hierarchical MnO2 nanoflakes (NFs) on vertically aligned carbon nanotubes (VACNTs) grown upon stainless steel (SS). The experimental results revealed that the prepared electrodes were well served as supercapacitors with a tremendous specific capacitance of MnO2 NFs VACNT/SS 1131 F/g at 0.25 A/g in 0.5 mol.L−1 Na2SO4, 518.8% more than VACNT/SS (218 F/g). Compared to other MnO2 NFs/CNT composites, as-fabricated binder-free MnO2 NFs/VACNTs electrode achieves outstanding performance with high initial discharge and charge capacities of... 

    Facile synthesis and simulation of MnO2 nanoflakes on vertically aligned carbon nanotubes, as a high-performance electrode for Li-ion battery and supercapacitor

    , Article Electrochimica Acta ; Volume 390 , 2021 ; 00134686 (ISSN) Abdollahi, A ; Abnavi, A ; Ghasemi, F ; Ghasemi, S ; Sanaee, Z ; Mohajerzadeh, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study reports the successful fabrication of high-performance flexible binder-free lithium-ion battery anode and supercapacitor based on the synthesis of 3D hierarchical MnO2 nanoflakes (NFs) on vertically aligned carbon nanotubes (VACNTs) grown upon stainless steel (SS). The experimental results revealed that the prepared electrodes were well served as supercapacitors with a tremendous specific capacitance of MnO2 NFs VACNT/SS 1131 F/g at 0.25 A/g in 0.5 mol.L−1 Na2SO4, 518.8% more than VACNT/SS (218 F/g). Compared to other MnO2 NFs/CNT composites, as-fabricated binder-free MnO2 NFs/VACNTs electrode achieves outstanding performance with high initial discharge and charge capacities of... 

    Effect of a synthesized pulsed electrodeposited Tin/pbo2-ruo2nanocomposite on zinc electrowinning

    , Article Industrial and Engineering Chemistry Research ; Volume 60, Issue 31 , 2021 , Pages 11737-11748 ; 08885885 (ISSN) Hakimi, F ; Rashchi, F ; Ghalekhani, M ; Dolati, A ; Razi Astaraei, F ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Nowadays, there is a growing interest in synthesizing electrodes used in zinc electrowinning, increasing active surface area, decreasing specific energy consumption, and the oxygen evolution reaction (OER) overpotential. In this study, modified nanocomposite anodes were synthesized by applying pulsed and constant direct current electrodeposition to improve the catalytic activity of the electrodes toward the oxygen evolution reaction (OER) and reduce energy consumption in zinc electrowinning. By decreasing particle size, the active surface area of PbO2-RuO2 nano-mixed composite electrode was 2.88 and 14.22 times greater than PbO2-RuO2 microcomposite and pure PbO2 electrodes, respectively.... 

    Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template

    , Article Materials Chemistry and Physics ; Volume 91, Issue 2-3 , 2005 , Pages 417-423 ; 02540584 (ISSN) Saedi, A ; Ghorbani, M ; Sharif University of Technology
    2005
    Abstract
    Anodic aluminum oxide (AAO) was used as a template to prepare highly ordered Ni-Fe-Co alloy nanowire arrays. This membrane was fabricated with two-step anodizing method. It is found that there is an optimum barrier thickness to obtain a successful electrodeposition in pores of AAO. The thickness of barrier layer can be modified by additional electrochemical process after completing the anodizing step. Barrier layer thinning can create a rooted structure at the bottom side of the AAO pores and the electrodeposited nanowire arrays. The triple Ni-Fe-Co alloy was deposited in AAO membrane by ac voltage in a simple sulfate bath. The composition of nanowires shows anomalous deposition features... 

    Characterization of porous poly-silicon impregnated with Pd as a hydrogen sensor

    , Article Journal of Physics D: Applied Physics ; Volume 38, Issue 1 , 2005 , Pages 36-40 ; 00223727 (ISSN) Rahimi, F ; Iraji Zad, A ; Razi, F ; Sharif University of Technology
    2005
    Abstract
    Porous poly-silicon (PPS) samples, obtained by electrochemical anodization of p-type poly-silicon wafers, were doped with Pd by the electroless process. Rutherford backscattering spectroscopy shows that Pd has diffused a few micrometres into the PPS layer. Scanning electron microscopy and energy dispersive x-ray analysis results demonstrate the presence of Pd as dispersed clusters on the surface. The variation of the electrical resistance in the presence of dry air diluted with hydrogen at room temperature shows that Pd/PPS samples have the ability to sense hydrogen at levels down to several thousands of ppm. This value is far below the flammability limit of hydrogen gas. It was found that... 

    Evaluation of electrical breakdown of anodic films on titanium in phosphate-base solutions

    , Article Surface and Coatings Technology ; Volume 186, Issue 3 , 2004 , Pages 398-404 ; 02578972 (ISSN) Afshar, A ; Vaezi, M. R ; Sharif University of Technology
    2004
    Abstract
    Titanium is a highly reactive metal, so that whenever it is exposed to air or other environments containing available oxygen, a thin layer of oxide is formed on the surface. This layer increases the corrosion resistance of titanium. The formation of the oxide film can be electrochemically performed by anodizing. In this research, anodizing of titanium was performed in phosphate-base solutions such as H3PO4, NaH2PO 4·2H2O and Na2HPO4 at 9.75 mA/cm2 and 35 °C under galvanostatic conditions. The potential-time curves in the above mentioned solutions show that the anodic films formed on Ti are compact and their thickness depends on the solution type and concentration. The SEM and XRD studies... 

    Anodizing of titanium in NaOH solution and its corrosion resistance in PBS physiologic solution

    , Article Scientia Iranica ; Volume 10, Issue 3 , 2003 , Pages 361-366 ; 10263098 (ISSN) Afshar, A ; Vaezi, M. R ; Sharif University of Technology
    Sharif University of Technology  2003
    Abstract
    Titanium is a highly reactive metal with an inclination to compose with oxygen. In order to increase its corrosion resistance and application, therefore, a thin layer of titanium oxide is produced on the surface by chemical and electrochemical methods. In the present research, titanium has been anodized in 20 M of NaOH solution under potentiostatic conditions at constant voltages of 25 and 35 V. The microstructure of the anodic layers has been studied by the use of a Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD). The results indicated that the structure of the anodic layers is amorphous with low porosity and that thickness increases with an increase in anodizing voltage. The... 

    Flooding and dehydration diagnosis in a polymer electrolyte membrane fuel cell stack using an experimental adaptive neuro-fuzzy inference system

    , Article International Journal of Hydrogen Energy ; Volume 47, Issue 81 , 2022 , Pages 34628-34639 ; 03603199 (ISSN) Khanafari, A ; Alasty, A ; Kermani, M. J ; Asghari, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Today the need for fault diagnosis in polymer electrolyte membrane fuel cells (PEMFCs) is felt more than ever to increase the useful life and durability of the cell. The present study proposes an indirect in-situ experimental-based algorithm for diagnosing the moisture content issues in a three-cell stack. Three adaptive neuro-fuzzy inference systems (ANFIS) approximate the system outputs (cells voltages, cathodic and anodic pressure drop) in normal conditions. The values of Pearson's correlation coefficients (0.998, 0.983, and 0.995 for outputs, respectively) show the high quality of the modeling. In unknown operating conditions, the residuals of experimental and ANFIS values are compared... 

    Plasma-enhanced chemical vapor deposition for fabrication of yolk-shell SnO2@Void@C nanowires, as an efficient carbon coating technique for improving lithium-ion battery performance

    , Article Materials Science in Semiconductor Processing ; Volume 149 , 2022 ; 13698001 (ISSN) Habibi, A ; Mousavi, M. R ; Yasoubi, M ; Sanaee, Z ; Ghasemi, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This manuscript describes the implementation of plasma-enhanced chemical vapor deposition (DC-PECVD) and vapor-liquid-solid (VLS) techniques to fabricate a yolk-shell SnO2@Void@C nanowire (NW) structure. SnO2 nanowires have been synthesized on the stainless steel mesh substrate through the VLS method. The PECVD-assisted growth of carbon nanolayer on the SnO2 and SiO2 coated SnO2 NWs has been performed to fabricate SnO2@C core-shell and SnO2@SiO2@C yolk-shell structures, respectively. A consequent silica etching process converted the SnO2@SiO2@C into SnO2@Void@C structure. The electrochemical performance of bare SnO2 NWs, SnO2 NWs @ C, and SnO2 @Void @ C coaxial NWs structures have been... 

    P-Doped g-C3N4Nanosheet-Modified BiVO4Hybrid Nanostructure as an Efficient Visible Light-Driven Water Splitting Photoanode

    , Article ACS Applied Energy Materials ; Volume 5, Issue 10 , 2022 , Pages 12283-12296 ; 25740962 (ISSN) Feizi Mohazzab, B ; Akhundi, A ; Rahimi, K ; Jaleh, B ; Moshfegh, A. Z ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Here, a solution combustion method was employed to construct a photoanode based on bismuth vanadate (BV) composition. To curtail the fast charge recombination, phosphorus-doped g-C3N4 nanosheets (PCNS) in combination with BV are considered a potential approach. The prepared solution combustion facilitated the formation of a BiVO4-PCNS (BV-PCNS) hybrid photoanode with worm-like morphology with a simple setup. The weight ratio of PCNS/BiVO4 and the loading volume/cm2 were optimized to determine the most efficient photoanode. The highest photocurrent density of 0.5 mA/cm2 at 1.23 V vs reversible hydrogen electrode (RHE) under 1 sun illumination was achieved for the hybrid nanostructure at 2 wt... 

    Research on the effect of transients of high-voltage power supplies on the lifetime of high-power vacuum tubes: A microscopic assessment

    , Article IEEE Transactions on Plasma Science ; Volume 50, Issue 11 , 2022 , Pages 4700-4708 ; 00933813 (ISSN) Kaboli, S ; Ziaoddini, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Electron guns are used as the electron sources in high-power electron tubes. The generated electron beam in electric guns passes through an aperture at the center of the anode. Since the electron beam has considerable kinetic energy, any collision between the electron beam and the anode aperture edge damages the electron gun. Therefore, electron guns are designed to meet the compatibility between the diameters of the electron beam and the anode aperture. However, this compatibility is disrupted during the transient time interval of the gun's power supply. In this article, the cause of failure of the electron gun of high-power electron tubes is investigated for the transient interval of the... 

    An ultrathin amorphous defective co-doped hematite passivation layer derived via an in situ electrochemical method for durable photoelectrochemical water oxidation

    , Article Journal of Materials Chemistry A ; Volume 10, Issue 31 , 2022 , Pages 16655-16665 ; 20507488 (ISSN) Fathabadi, M ; Qorbani, M ; Sabbah, A ; Quadir, S ; Huang, C. Y ; Chen, K. H ; Chen, L. C ; Naseri, N ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Although hematite (i.e., α-Fe2O3) has been widely investigated in photoelectrochemical water oxidation studies due to its high theoretical photocurrent density, it still suffers from serious surface charge recombination and low photoelectrochemical stability. Here we report an in situ electrochemical method to form a uniform and ultrathin (i.e., 3-5 nm) passivation layer all over the pores of an optimized ∼3.2% Ti-doped α-Fe2O3 photoanode. We unveil the amorphous and defective nature of the in situ derived layer assigned to a high concentration of oxygen vacancies and intercalated potassium atoms there, i.e., the formation of Ti/K co-doped defective α-Fe2O3−x. Owing to the efficient...