Loading...
Search for: aspect-ratio
0.012 seconds

    Solar radiation on domed roofs

    , Article Energy and Buildings ; Volume 41, Issue 11 , 2009 , Pages 1238-1245 ; 03787788 (ISSN) Faghih Khorasani, A. R ; Bahadori, M.N ; Sharif University of Technology
    2009
    Abstract
    Solar radiation received and absorbed by four domed roofs was estimated and compared with that of a flat roof. The domed roofs all had the same base areas, and equal to that of the flat roof. One of the roofs considered was the dome of the St. Peter's Church in Rome. Compared with the other roofs considered, this dome had a higher aspect ratio. It was found that all domed roofs received more solar radiation than the flat roof. Considering glazed tiles to cover a selected dome in Iran and the dome of the St. Peter's Church, it was found that the solar radiation absorbed by these roofs is reduced appreciably. In the case of the dome of St. Peter's Church, the amount of radiation absorbed was... 

    Numerical investigation of turbulent free jet flows issuing from rectangular nozzles: The influence of small aspect ratio

    , Article Archive of Applied Mechanics ; Volume 80, Issue 7 , 2010 , Pages 727-745 ; 09391533 (ISSN) Faghani, E ; Maddahian, R ; Faghani, P ; Farhanieh, B ; Sharif University of Technology
    2010
    Abstract
    In this research, the fluid and thermal characteristics of a rectangular turbulent jet flow is studied numerically. The results of three-dimensional jet issued from a rectangular nozzle are presented. A numerical method employing control volume approach with collocated grid arrangement was employed. Velocity and pressure fields are coupled with SIMPLEC algorithm. The turbulent stresses are approximated using k-ε model with two different inlet conditions. The velocity and temperature fields are presented and the rates of their decay at the jet centerline are noted. The velocity vectors of the main flow and the secondary flow are illustrated. Also, effect of aspect ratio on mixing in... 

    Numerical investigation of effect of aspect ratio of rectangular nozzles

    , Article 2008 2nd International Conference on Thermal Issues in Emerging Technologies, ThETA 2008, Cairo, 17 December 2008 through 20 December 2008 ; July , 2008 , Pages 391-398 ; 9781424435777 (ISBN) Faghani, E ; Farhanieh, B ; Maddahian, R ; Faghani, P ; Sharif University of Technology
    2008
    Abstract
    In this research the fluid and thermal characteristics of a rectangular turbulent jet flow is studied numerically. The results of three dimensional jet issued from a rectangular nozzle are presented. A numerical method employing control volume approach with collocated grid arrangement was employed. Velocity and pressure fields are coupled with SIMPLEC algorithm. The turbulent stresses are approximated using k-e model with two different inlet conditions. The velocity and temperature fields are presented and the rates of their decay at jet centerline are noted. The velocity vectors of a main flow and secondary flow are illustrated. Also effect of aspect ratio on mixing in rectangular cross... 

    Multi-objective robust design optimization (MORDO) of an aeroelastic high-aspect-ratio wing

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 42, Issue 11 , 2020 Elyasi, M ; Roudbari, A ; Hajipourzadeh, P ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2020
    Abstract
    In this paper, a new approach for multi-objective robust optimization of flutter velocity and maximum displacement of the wing tip are investigated. The wing is under the influence of bending–torsion coupling and its design variables have different levels of uncertainty. In designing and optimizing wings with a high aspect ratio, the optimization process can be done in such a way to increase the flutter velocity, but this can increase the amplitude of the wing tip displacement to a point that leads to the wings damage and structural failure. Therefore, single-objective design optimization may lead to infeasible designs. Thus, for multi-objective optimization, modeling is based on the... 

    Facile preparation of branched hierarchical ZnO nanowire arrays with enhanced photocatalytic activity: a photodegradation kinetic model

    , Article Applied Surface Science ; Volume 435 , 2018 , Pages 108-116 ; 01694332 (ISSN) Ebrahimi, M ; Yousefzadeh, S ; Samadi, M ; Dong, C ; Zhang, J ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Branched hierarchical zinc oxide nanowires (BH-ZnO NWs) were fabricated successfully by a facile and rapid synthesis using two-step growth process. Initially, ZnO NWs have been prepared by anodizing zinc foil at room temperature and followed by annealing treatment. Then, the BH- ZnO NWs were grown on the ZnO NWs by a solution based method at very low temperature (31 oC). The BH- ZnO NWs with different aspect ratio were obtained by varying reaction time (0.5, 2, 5, 10 h). Photocatalytic activity of the samples was studied under both UV and visible light. The results indicated that the optimized BH-ZnO NWs (5 h) as a photocatalyst exhibited the highest photoactivity with about 3 times higher... 

    Bidirectional behavior of unreinforced masonry walls

    , Article Earthquake Engineering and Structural Dynamics ; Vol. 43, Issue 15 , 1 December , 2014 , pp. 2377-2397 ; ISSN: 00988847 Dolatshahi, K. M ; Aref, A. J ; Yekrangnia, M ; Sharif University of Technology
    Abstract
    Most of the studies related to the modeling of masonry structures have by far investigated either the in-plane (IP) or the out-of-plane (OP) behavior of walls. However, seismic loads mostly impose simultaneous IP and OP demands on load-bearing or shear masonry walls. Thus, there is a need to reconsider design equations of unreinforced masonry walls by taking into account bidirectional effects. The intent of this study is to investigate the bidirectional behavior of an unreinforced masonry wall with a typical aspect ratio under different displacement-controlled loading directions making use of finite element analysis. For this purpose, the numerical procedure is first validated against the... 

    Out-of-plane strength reduction of unreinforced masonry walls because of in-plane damages

    , Article Earthquake Engineering and Structural Dynamics ; Volume 44, Issue 13 , 2015 , Pages 2157-2176 ; 00988847 (ISSN) Dolatshahi, K. M ; Yekrangnia, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2015
    Abstract
    There are numerous studies on the behavior of Unreinforced Masonry (URM) walls in both in-plane (IP) and out-of-plane (OP) directions; however, few aimed at understanding the simultaneous contribution of these intrinsic responses during earthquakes. Undoubtedly, even a strong URM wall shows weakened capacity in the OP direction because of minor cracks and other damages in the IP direction, and this capacity reduction has not yet been accounted for in seismic codes. In this study, performance of three URM walls is evaluated by several numerical analyses in terms of the OP capacity reduction because of IP displacements and failure modes. Several parameters influencing the OP capacity have been... 

    Interaction curves for in-plane and out-of-plane behaviors of unreinforced masonry walls

    , Article Journal of Earthquake Engineering ; Volume 19, Issue 1 , 2015 , Pages 60-84 ; 13632469 (ISSN) Dolatshahi, K. M ; Aref, A. J ; Whittaker, A. S ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    Different types of macro-elements have been proposed to simulate the behavior of unreinforced masonry (URM) structures under seismic loads. In many of these, macro-elements URM walls are replaced with beam elements with different hysteretic behaviors. The effect of out-of-plane loading or change of gravity load due to the overturning moment is usually not considered in the behavior of these macro-elements. This article presents interaction curves for bidirectional loadings of unreinforced masonry walls to investigate the importance of these factors. Two parameters are systematically changed to derive the interaction curves for a wall with specific dimensions, including compressive traction... 

    Numerical study on factors that influence the in-plane drift capacity of unreinforced masonry walls

    , Article Earthquake Engineering and Structural Dynamics ; Volume 47, Issue 6 , 2018 , Pages 1440-1459 ; 00988847 (ISSN) Dolatshahi, K. M ; Nikoukalam, M. T ; Beyer, K ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    Displacement-based assessment procedures require as input reliable estimates of the deformation capacity of all structural elements. For unreinforced masonry (URM) walls, current design codes specify the in-plane deformation capacity as empirical equations of interstory drift. National codes differ with regard to the parameters that are considered in these empirical drift capacity equations, but the inhomogeneity of datasets on URM wall tests renders it difficult to validate the hypotheses with the currently available experimental data. This paper contributes to the future development of such empirical relationships by investigating the sensitivity of the drift capacity to the shear span,... 

    Corrected formulation for estimation of ripple in large aspect ratio tokamaks

    , Article Journal of Fusion Energy ; Volume 31, Issue 2 , 2012 , Pages 195-197 ; 01640313 (ISSN) Dini, F ; Khorasani, S ; Sharif University of Technology
    Abstract
    The finite number of toroidal field coils of a tokamak destroys the perfect axisymmetry of the device. The coils produce a short wavelength ripple in the toroidal magnetic field strength as a field line follows round the torus, which becomes important in transport and confinement properties of plasma. Hence, a quick and accurate estimation of ripple becomes important. We have noticed that a previously reported analytical formulation by Princeton Plasma Physics Laboratory team is not applicable to our large aspect ratio tokamak, and have devised a slightly modified form which has greatly improved the accuracy of the analytical fit  

    MHD equilibrium and kink stability in Damavand tokamak

    , Article Journal of Fusion Energy ; Volume 28, Issue 3 , 2009 , Pages 282-289 ; 01640313 (ISSN) Dini, F ; Khorasani, S ; Sharif University of Technology
    2009
    Abstract
    Magnetohydrodynamic (MHD) equilibrium is vulnerable to numerous destabilizing mechanisms. Instabilities introduce distortions to the plasma magnetic surfaces and its boundaries, their driving force being the radial gradient of plasma toroidal current density. For certain modal numbers, internal kink modes may develop, and their study is feasible according to the energy principle, in which the change in total potential energy due to the disturbance is evaluated. In this article, we present a totally new analysis of MHD equilibrium and stability, and apply it to Damavand tokamak which has a large aspect ratio. For this purpose, we combine perturbation and Green's function methods to solve for... 

    Effects of wing geometry on wing-body-tail interference in subsonic flow

    , Article Scientia Iranica ; Volume 18, Issue 3 B , 2011 , Pages 407-415 ; 10263098 (ISSN) Davari, A. R ; Soltani, M. R ; Askari, F ; Pajuhande, H. R ; Sharif University of Technology
    Abstract
    Extensive wind tunnel tests were performed on several wing- body-tail combinations in subsonic flow to study the effects of wing geometric parameters on the flow field over the tail. For each configuration, tail surface pressure distribution, as well as the velocity contour at a plane perpendicular to the flow direction behind the wing was measured. The results show a strong effect of wing to tail span ratio, as well as wing aspect ratio, on the flowfield downstream of the wing. For low sweep wings, as those considered here, wing and body interference effects on the tail are associated with the wing tip vortex and nose-body vortex  

    A study on the axial stresses of P-FGM, SFGM and E-FGM plates under pressure loading using the energy concept

    , Article 27th Congress of the International Council of the Aeronautical Sciences 2010, ICAS 2010, 19 September 2010 through 24 September 2010, Nice ; Volume 3 , 2010 , Pages 2060-2068 ; 9781617820496 (ISBN) Dastoom Laatleyli, H ; Abedian, A ; Sharif University of Technology
    2010
    Abstract
    In this study the energy concept along with the classical plate theory (CPT), first and third order shear deformation theories (FSDT and TSDT) are used to predict the large deflection and through the thickness stresses of a FGM plate. For defining the volume fraction of the FGM constituent materials three different functions are considered; simple power-law (PFGM), exponential (E-FGM) and sigmoid (S_FGM) functions. Power-law and exponential functions are commonly used tocontrol the variations of properties of FGMs. However, with both functions, a stress concentration appears due to abruptchange of the volume fraction of the constituents. Therefore, a sigmoid FGM is used to define a new... 

    CFD-aided simulation of frost growth inside a narrow duct with uniform wall temperature variation

    , Article ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2014, Collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting ; 2014 ; ISBN: 9780791846278 Darbandi, M ; Asgari, E ; Hajikaram, M ; Schneider, G. E ; Sharif University of Technology
    Abstract
    In this paper, we study the frost formation and growth at the walls of a duct with uniform wall temperature variation. The simulation is performed for laminar flow regime considering suitable semi-empirical models incorporated with computational fluid dynamics (CFD) method. The frost growth is considered to be normal to the duct surface. Since the duct aspect ratio is high, we perform our simulations in two-dimensional zones. To simulate the frost layer properly, we solve both the energy and mass balance equations implementing some semi-empirical correlations on the frost side. At this stage, we suitably predict the required heat flux value at the solid boundary and the heat transfer... 

    Numerical study of flow and heat in long micro and nano channels

    , Article 1st ASME Micro/Nanoscale Heat Transfer International Conference, MNHT08, Tainan, 6 January 2008 through 9 January 2008 ; Volume Parts A and B , 2008 , Pages 1299-1307 ; 0791842924 (ISBN); 9780791842928 (ISBN) Darbandi, M ; Vakilipour, S ; Sharif University of Technology
    2008
    Abstract
    In this work, we extend a numerical tool capable of solving compressible and incompressible gas flows to study the momentum and heat transfer rates in micro/nano channels with high aspect ratio (L/H = 8000), where the compressibility effect is dominant. The constant heat flux thermal boundary condition is firstly applied at the wall. Next, the flow regime is extended to the early transition regime employing a high order slip velocity boundary condition based on the kinetic theory assumptions. The accuracy of the present results in the slip flow regimes is evaluated against other available theoretical and experimental results. The thermal and compressibility effects on the pressure and... 

    Microflow in lid-driven microcavity with various aspect ratios

    , Article 46th AIAA Aerospace Sciences Meeting and Exhibit ; 2008 ; 9781563479373 (ISBN) Darbandi, M ; Daghighi, Y ; Vakilipour, S ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2008
    Abstract
    In this work, a finite-volume-element method1-4 is suitably extended to simulate the rarefied gas flow in lid-driven cavities with different height to width ratios. The flow conditions are chosen in a manner to cover the free molecular transition regime to the continuum one. As the hydrodynamic diameter of a driven cavity becomes comparable with the mean free path of the gas molecules in the cavity, the flow can no longer be considered as being in thermodynamic equilibrium; hence, a variety of non-equilibrium or rarefaction effects emerge. In this study, we show that the non-equilibrium effects in lid-driven cavity can be encountered and they become more serious in lower Knudsen numbers. We... 

    Controlling morphology and structure of nanocrystallineVcadmium sulfide (CdS) by tailoring solvothermal processing parameters

    , Article Journal of Nanoparticle Research ; Volume 13, Issue 7 , 2011 , Pages 3011-3018 ; 13880764 (ISSN) Dalvand, P ; Mohammadi, M. R ; Sharif University of Technology
    2011
    Abstract
    Cadmium sulfide (CdS) with different morphologies was successfully prepared by solvothermal process by controlling the processing parameters, including nature of precursor and solvent, reaction temperature and process time. X-ray diffraction patterns revealed that, in all cases highly pure and crystallized CdS with hexagonal structure were obtained. In addition, it was found that the processing parameters influence on preferable growth direction of CdS nanostructures. Field emission scanning electron microscope analysis showed that CdS nanowires with different aspect ratios were obtained (depending upon the reaction temperature and process time) in presence of sulfur powder and... 

    One-dimensional cadmium sulfide (CdS) nanostructures by the solvothermal process: Controlling crystal structure and morphology aided by different solvents

    , Article Materials Letters ; Volume 65, Issue 9 , 2011 , Pages 1291-1294 ; 0167577X (ISSN) Dalvand, P ; Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    Abstract
    Cadmium sulfide (CdS) nanowires and nanorods with different aspect ratios were successfully synthesized by the solvothermal method aided with various solvents, namely ethylenediamine, ethanolamine and triethylene tetraamine. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses revealed that, highly pure CdS nanostructures were crystallized with different structures and preferable growth orientations depending on solvent nature. Field emission electron microscope (FE-SEM) images showed that the aspect ratio of CdS nanostructures depends upon the dielectric constant and boiling temperature of solvents. CdS nanostructures with the highest aspect ratio in the form... 

    Studies on the oxygen barrier and mechanical properties of low density polyethylene/organoclay nanocomposite films in the presence of ethylene vinyl acetate copolymer as a new type of compatibilizer

    , Article Materials and Design ; Volume 32, Issue 4 , 2011 , Pages 1806-1813 ; 02641275 (ISSN) Dadfar, S. M. A ; Alemzadeh, I ; Reza Dadfar, S. M ; Vosoughi, M ; Sharif University of Technology
    Abstract
    Nanocomposite films based on low density polyethylene (LDPE), containing of 2, 3, and 4. wt.% organoclay (OC) and ethylene vinyl acetate (EVA) copolymer as a new compatibilizer were prepared and characterized using rheological tests, X-ray diffraction, differential scanning calorimetry, oxygen permeation measurements, and tensile tests. There was no exfoliation or intercalation of the clay layers in the absence of EVA, while an obvious increase in d-spacing was observed when the samples were prepared with EVA present. This issue was reflected in the properties of nanocomposites. The oxygen barrier properties of the LDPE/EVA/OC film were significantly better than those of the LDPE/OC film.... 

    Investigation of oxygen barrier properties of organoclay/HDPE/EVA nanocomposite films prepared using a two-step solution method

    , Article Polymer Composites ; Volume 30, Issue 6 , 2009 , Pages 812-819 ; 02728397 (ISSN) Dadfar, M. R ; Ramezani Saadat Abadi, A ; Dadfar, M. A ; Sharif University of Technology
    2009
    Abstract
    In this article, oxygen barrier properties of nanocomposite films composed of organoclay (OC), high-density polyethylene (HDPE), and ethylene vinyl acetate (EVA) copolymer have been investigated. The nanocomposite films whose EVA forms a dominant fraction were prepared using the solution method. The dispersion of the OC in the HDPE/EVA blend was improved through taking two-step procedure in the preparation of nanocomposite. First, the OC and EVA were dissolved in chloroform. Then, the resulting product, after evaporating most of the solvent, along with HDPE was dissolved in xylene. The obtained nanocomposite films underwent a number of tests in order to examine their barrier properties...