Loading...
Search for: aspect-ratio
0.011 seconds
Total 217 records

    Primary breakup dynamics and spray characteristics of a rotary atomizer with radial-axial discharge channels

    , Article International Journal of Multiphase Flow ; 2018 ; 03019322 (ISSN) Rezayat, S ; Farshchi, M ; Ghorbanhoseini, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    An experimental investigation of primary breakup dynamics and spray characteristics of a rotary atomizer with high aspect ratio radial-axial discharge channel is described. A high-resolution shadow imaging technique with pulsed backlight illumination was used for spray visualization. For the rotary atomizer with high aspect ratio discharge channel and radial-axial orientation, visualization showed the occurrence of Centripetal–Coriolis-induced stream-mode injection for all operating conditions. In this mode of injection, a crescent liquid film forms in the channel exit and issues from the orifice as a liquid column or a thin liquid sheet depending on atomizer operating conditions. It was... 

    Study on the effect of jets geometry in liquid atomization based on nonlinear stability analysis

    , Article ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, GT 2018, 11 June 2018 through 15 June 2018 ; Volume 4A-2018 , 2018 ; 9780791851050 (ISBN) Jafari, S ; Nehzati, T ; International Gas Turbine Institute ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2018
    Abstract
    In this paper, nonlinear instability of an elliptical jet is investigated by considering the impacts of orifice geometry variations using regular perturbation method. In the breakup mechanisms, created disturbances on the jet interfaces will grow owing to the nonlinear dynamics of fluid. In this study, a scrutiny of nonlinear cylindrical jet breakup is done initially. Next, Cosserat equations as a low order form of Navies-Stokes equations are solved on the nonlinear form to exert the impacts of orifice deformation on various aspect ratios. These nonlinear equations, Cosserat equations, are linearly solved in the past papers. As a result, the dispersion equation is derived to find the most... 

    Inertial particle focusing in serpentine channels on a centrifugal platform

    , Article Physics of Fluids ; Volume 30, Issue 1 , 2018 ; 10706631 (ISSN) Shamloo, A ; Mashhadian, A ; Sharif University of Technology
    American Institute of Physics Inc  2018
    Abstract
    Inertial particle focusing as a powerful passive method is widely used in diagnostic test devices. It is common to use a curved channel in this approach to achieve particle focusing through balancing of the secondary flow drag force and the inertial lift force. Here, we present a focusing device on a disk based on the interaction of secondary flow drag force, inertial lift force, and centrifugal forces to focus particles. By choosing a channel whose cross section has a low aspect ratio, the mixing effect of the secondary flow becomes negligible. To calculate inertial lift force, which is exerted on the particle from the fluid, the interaction between the fluid and particle is investigated... 

    A numerical study of reactive pollutant dispersion in street canyons with green roofs

    , Article Building Simulation ; Volume 11, Issue 1 , February , 2018 , Pages 125-138 ; 19963599 (ISSN) Moradpour, M ; Afshin, H ; Farhanieh, B ; Sharif University of Technology
    Tsinghua University Press  2018
    Abstract
    Roof greening is a new technique for improvement of outdoor thermal environment which influences air quality through its impacts on thermal and flow field. In order to examine effects of green roofs on reactive pollutant dispersion within urban street canyons, a computational fluid dynamics (CFD) model was employed which contained NO-NO2-O3 photochemistry and energy balance models. Simulations were performed for street canyons with different aspect ratios (H/W) of 0.5, 1.0, and 2.0 such that leaf area density (LAD) of green roofs changed. It was found that roof greening led distribution of pollutants to alter for H/W = 0.5 and 1.0 cases in such a manner that their averaged concentrations had... 

    Fully-coupled mathematical modeling of actomyosin-cytosolic two-phase flow in a highly deformable moving Keratocyte cell

    , Article Journal of Biomechanics ; Volume 67 , January , 2018 , Pages 37-45 ; 00219290 (ISSN) Nikmaneshi, M. R ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Interaction between intracellular dynamics and extracellular matrix (ECM) generally occurred into very thin fragment of moving cell, namely lamellipodia, enables all movable cells to crawl on ECM. In fast-moving cells such as fish Keratocytes, Lamellipodia including most cell area finds a fan-like shape during migration, with a variety of aspect ratio function of fish type. In this work, our purpose is to present a novel and more complete two-dimensional continuum mathematical model of actomyosin-cytosolic two-phase flow of a self-deforming Keratocyte with circular spreaded to steady fan-like shape. In the new approach, in addition to the two-phase flow of the F-actin and cytosol, the... 

    Friction factor and nusselt number in annular flows with smooth and slotted surface

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; 2018 ; 09477411 (ISSN) Nouri Borujerdi, A ; Erfanian Nakhchi, M ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    The purpose of this experimental work is to study the effect of slot depth to width ratio, rotational motion and inlet velocity on friction factor and Nusselt number in an annular flow between two concentric cylinders with smooth and slotted surface. The heated outer surface is stationary and the unheated inner one is rotating. This configuration is popular in industrial applications such as internal air system of gas turbine engines, cooling of rotating machinery, techniques of chemical vapor deposition and solidification of pure metals. The results show that the ratio of average slotted surface friction factor to that of the smooth one enhances by increasing the slot depth to width ratio... 

    Nonlinear dynamics of extensible viscoelastic cantilevered pipes conveying pulsatile flow with an end nozzle

    , Article International Journal of Non-Linear Mechanics ; Volume 91 , 2017 , Pages 22-35 ; 00207462 (ISSN) Askarian, A. R ; Haddadpour, H ; Dehghani Firouz Abadi, R ; Abtahi, H ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Nonlinear dynamics of an extensible cantilevered pipe conveying pulsating flow is considered in this paper. The fluid flow fluctuates harmonically and exhausts via a nozzle attached to the end of the pipe. Taking into account the extensibility assumption, the coupled nonlinear lateral–longitudinal equations of motion are derived using Hamilton's principle and discretized via Galerkin's method. The adaptive time step Adams algorithm is applied to extract the time response, and then the bifurcation, power spectral density and phase plane maps are plotted for some case studies. Effects of some geometrical parameters such as flow mass, pulsating flow frequency, gravity, nozzle mass and nozzle... 

    HPGR effect on the particle size and shape of iron ore pellet feed using response surface methodology

    , Article Transactions of the Institutions of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy ; 2017 , Pages 1-9 ; 03719553 (ISSN) Abazarpoor, A ; Halali, M ; Hejazi, R ; Saghaeian, M ; Sharif University of Technology
    Taylor and Francis Ltd  2017
    Abstract
    In this study the effect of HPGR operational parameters on the dimensional properties of pellet feed was examined and optimized using factorial methodology. The operational parameters considered include feed moisture, specific pressure and roll speed. For this study, size and shape of particles with Blaine number in the range 1800–2200 cm2 g−1 was thoroughly investigated. It was deduced that increasing the specific pressure and decreasing the roll speed would result in reduction of D80 but would increase the Blaine number. The circularity, aspect ratio and roughness descriptors of the particles were measured by SEM micrographs and image analysis software. It was observed that particles... 

    Fully-coupled mathematical modeling of actomyosin-cytosolic two-phase flow in a highly deformable moving Keratocyte cell

    , Article Journal of Biomechanics ; 2017 ; 00219290 (ISSN) Nikmaneshi, M. R ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Interaction between intracellular dynamics and extracellular matrix (ECM) generally occurred into very thin fragment of moving cell, namely lamellipodia, enables all movable cells to crawl on ECM. In fast-moving cells such as fish Keratocytes, Lamellipodia including most cell area finds a fan-like shape during migration, with a variety of aspect ratio function of fish type. In this work, our purpose is to present a novel and more complete two-dimensional continuum mathematical model of actomyosin-cytosolic two-phase flow of a self-deforming Keratocyte with circular spreaded to steady fan-like shape. In the new approach, in addition to the two-phase flow of the F-actin and cytosol, the... 

    Optimization of the heat transfer coefficient and pressure drop of Taylor-Couette-Poiseuille flows between an inner rotating cylinder and an outer grooved stationary cylinder

    , Article International Journal of Heat and Mass Transfer ; Volume 108 , 2017 , Pages 1449-1459 ; 00179310 (ISSN) Nouri Borujerdi, A ; Nakhchi, M. E ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The aim of this study is to find optimum values of design parameters of annular flow with outer grooved cylinder and rotating inner cylinder in the presence of axial flow by using Response surface Method (RSM). This configuration is popular in cooling of electric generators and rotating machineries. Groove aspect ratio (0

    Three-dimensional numerical simulation of a novel electroosmotic micromixer

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 119 , 2017 , Pages 25-33 ; 02552701 (ISSN) Shamloo, A ; Madadelahi, M ; Abdorahimzadeh, S ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Lab-on-a-chip (LOC) systems have been widely used in chemical and medical analyses. In this study, a novel T-shaped electroosmotic micromixer was simulated and the effects of different parameters on the mixing process were examined. These parameters include; inlet angle, number of conducting hurdles, arrangements of the hurdles, geometry of hurdles and chambers, aspect ratios of the channel cross-sectional profile, hurdle radius, and depth. It was found that the inlet angle has a direct influence on mixing index (σ). The effect of various number of hurdles (one, two, three and four hurdles) and their orientations was investigated. Simulations revealed that using two conducting hurdles is the... 

    Evaluation of planing craft maneuverability using mathematical modeling under the action of the rudder

    , Article Scientia Iranica ; Volume 24, Issue 1 , 2017 , Pages 293-301 ; 10263098 (ISSN) Hajizadeh, S ; Seif, M. S ; Mehdigholi, H ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    In the recent years, different mathematical models have been suggested for maneuvering of displacement vessels, which are capable to estimate maneuvering of the vessel with acceptable precision. But, simulation of planing craft maneuverability through a mathematical model has not been developed yet. In this paper, a mathematical model is developed for maneuvering of the planing craft by including the rudder forces and moments. Different maneuvers, such as straight-line stability, course keeping, and turning circle, are executed through the mathematical model. Simulation results are validated with the published experimental results and it is shown that they are in good agreement. Finally, the... 

    A practical method for aerodynamic investigation of WIG

    , Article Aircraft Engineering and Aerospace Technology ; Volume 88, Issue 1 , 2016 , Pages 73-81 ; 00022667 (ISSN) Seif, M. S ; Tavakoli Dakhrabadi, M ; Sharif University of Technology
    Emerald Group Publishing Ltd  2016
    Abstract
    Purpose - The purpose of this paper is to present a fast, economical and practical method for mathematical modeling of aerodynamic characteristics of rectangular wing in ground (WIG) effect. Design/methodology/approach - Reynolds averaged Navier-Stokes (RANS) equations were converted to Bernoulli equation by reasonable assumptions. Also, Helmbold's equation has been developed for calculation of the slope of wing lift coefficient in ground effect by defining equivalent aspect ratio (ARe). Comparison of present work results against the experimental results has shown good agreement. Findings - A practical mathematical modeling with lower computational time and higher accuracy was presented for... 

    Influence of diaphragm opening on seismic response of rectangular RC buildings with end shear walls

    , Article Scientia Iranica ; Volume 23, Issue 4 , 2016 , Pages 1689-1698 ; 10263098 (ISSN) Khaloo, A. R ; Masoomi, H ; Nozhati, S ; Mohamadi Dehcheshmeh, M ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    Routinely, behavior of floor diaphragms is assumed completely rigid in their plane, which leads to erroneous results in analysis and design of some particular buildings. In this study, 4-story RC buildings, with end shear walls and plan aspect ratio of 3, are considered in order to investigate the influence of diaphragm openings on their seismic response. It is concluded that although in-plane floor flexibility has enormous effects on pre-yielding part of pushover curve, it has no influence on post-yielding part of that. Furthermore, the opening beside shear walls has crucial impact on response of building. Hence, it would be better off avoiding opening near the shear walls; if not, the... 

    Numerical investigation of nozzle geometry effect on turbulent 3-D water offset jet flows

    , Article Journal of Applied Fluid Mechanics ; Volume 9, Issue 4 , 2016 , Pages 2083-2095 ; 17353572 (ISSN) Mohammad Aliha, N ; Afshin, H ; Farahanieh, B ; Sharif University of Technology
    Isfahan University of Technology  2016
    Abstract
    Using the Yang-Shih low Reynolds k-ε turbulence model, the mean flow field of a turbulent offset jet issuing from a long circular pipe was numerically investigated. The experimental results were used to verify the numerical results such as decay rate of streamwise velocity, locus of maximum streamwise velocity, jet half width in the wall normal and lateral directions, and jet velocity profiles. The present study focused attention on the influence of nozzle geometry on the evolution of a 3D incompressible turbulent offset jet. Circular, square-shaped, and rectangular nozzles were considered here. A comparison between the mean flow characteristics of offset jets issuing from circular and... 

    CFD modeling of natural convection in right-angled triangular enclosures

    , Article International Journal of Heat and Technology ; Volume 34, Issue 3 , 2016 , Pages 503-506 ; 03928764 (ISSN) Mirabedin, S. M ; Sharif University of Technology
    Edizioni ETS  2016
    Abstract
    Two-dimensional numerical simulations have been performed to study natural convection in right-angled triangular enclosures filled with water considering different aspect ratios. Continuity, momentum and energy equations are solved assuming Boussinesq approximation utilizing COMSOL. Effect of Rayleigh number, Ra, on heat transfer rate is investigated by showing Nusselt number, Nu, for a range from 1 × 104 to 1 × 107 . It is shown that increasing aspect ratio of the cavity increases averaged Nusselt number in a cavity heated from below. Finally, a correlation for heat transfer rate is developed considering the effect of aspect ratio using simulation results  

    Electrokinetic and aspect ratio effects on secondary flow of viscoelastic fluids in rectangular microchannels

    , Article Microfluidics and Nanofluidics ; Volume 20, Issue 8 , 2016 ; 16134982 (ISSN) Reshadi, M ; Saidi, M. H ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    The secondary flow of PTT fluids in rectangular cross-sectional plane of microchannels under combined effects of electroosmotic and pressure driving forces is the subject of the present study. Employing second-order central finite difference method in a very refined grid network, we investigate the effect of electrokinetic and geometric parameters on the pattern, strength and the average of the secondary flow. In this regard, we try to illustrate the deformations of recirculating vortices due to change in the dimensionless Debye–Hückel and zeta potential parameters as well as channel aspect ratio. We demonstrate that, in the presence of thick electric double layers, significant alteration... 

    Investigation of CFS shear walls with one and two-sided steel sheeting

    , Article Journal of Constructional Steel Research ; Volume 122 , 2016 , Pages 292-307 ; 0143974X (ISSN) Attari, N. K. A ; Alizadeh, S ; Hadidi, S ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this study six Cold-Formed Steel shear wall (CFS) with one and two side steel sheeting are tested under reversed cyclic loading. Besides, thirteen numerical models are simulated, using nonlinear finite element method, and analyzed under monotonic pushover loading. The studied parameters are the comparison of one and two side steel sheeting, the nominal thickness of steel sheet and boundary elements, and height to width aspect ratios of the wall. The performance of tested specimens is investigated in terms of lateral load-story drift response, failure modes and ultimate strength of shear walls. Based on AISI S213 the available strength of two-sided steel-sheathed walls is cumulative but... 

    Broadband and low-loss plasmonic Light trapping in dye-sensitized solar cells using micrometer-scale rodlike and spherical core-shell plasmonic particles

    , Article ACS Applied Materials and Interfaces ; Volume 8, Issue 25 , 2016 , Pages 16359-16367 ; 19448244 (ISSN) Malekshahi Byranvand, M ; Nemati Kharat, A ; Taghavinia, N ; Dabirian, A ; Sharif University of Technology
    American Chemical Society  2016
    Abstract
    Dielectric scattering particles have widely been used as embedded scattering elements in dye-sensitized solar cells (DSCs) to improve the optical absorption of the device. Here we systematically study rodlike and spherical core-shell silica@Ag particles as more effective alternatives to the dielectric scattering particles. The wavelength-scale silica@Ag particles with sufficiently thin Ag shell support hybrid plasmonic-photonic resonance modes that have low parasitic absorption losses and a broadband optical response. Both of these features lead to their successful deployment in light trapping in high-efficiency DSCs. Optimized rodlike silica@Ag@silica particles improve the power conversion... 

    Analytical solutions for the size dependent buckling and postbuckling behavior of functionally graded micro-plates

    , Article International Journal of Engineering Science ; Volume 100 , 2016 , Pages 45-60 ; 00207225 (ISSN) Taati, E ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this study, the buckling and postbuckling analysis of FG micro-plates under different kinds of traction on the edges is investigated based on the modified couple stress theory. The static equilibrium equations of an FG rectangular micro-plate as well as the boundary conditions are derived using the principle of minimum total potential energy. The analytical solutions are developed for three case studies including: simply supported micro-plates subjected to uniform transverse load and biaxial tractions, clamped-simply supported micro-plates under uniform transverse load and axial traction, and simply supported micro-plates subjected to shear traction. All plate properties except the length...