Loading...
Search for: aspect-ratio
0.01 seconds
Total 217 records

    Numerical study of flow and heat in long micro and nano channels

    , Article 1st ASME Micro/Nanoscale Heat Transfer International Conference, MNHT08, Tainan, 6 January 2008 through 9 January 2008 ; Volume Parts A and B , 2008 , Pages 1299-1307 ; 0791842924 (ISBN); 9780791842928 (ISBN) Darbandi, M ; Vakilipour, S ; Sharif University of Technology
    2008
    Abstract
    In this work, we extend a numerical tool capable of solving compressible and incompressible gas flows to study the momentum and heat transfer rates in micro/nano channels with high aspect ratio (L/H = 8000), where the compressibility effect is dominant. The constant heat flux thermal boundary condition is firstly applied at the wall. Next, the flow regime is extended to the early transition regime employing a high order slip velocity boundary condition based on the kinetic theory assumptions. The accuracy of the present results in the slip flow regimes is evaluated against other available theoretical and experimental results. The thermal and compressibility effects on the pressure and... 

    Numerical investigation of effect of aspect ratio of rectangular nozzles

    , Article 2008 2nd International Conference on Thermal Issues in Emerging Technologies, ThETA 2008, Cairo, 17 December 2008 through 20 December 2008 ; July , 2008 , Pages 391-398 ; 9781424435777 (ISBN) Faghani, E ; Farhanieh, B ; Maddahian, R ; Faghani, P ; Sharif University of Technology
    2008
    Abstract
    In this research the fluid and thermal characteristics of a rectangular turbulent jet flow is studied numerically. The results of three dimensional jet issued from a rectangular nozzle are presented. A numerical method employing control volume approach with collocated grid arrangement was employed. Velocity and pressure fields are coupled with SIMPLEC algorithm. The turbulent stresses are approximated using k-e model with two different inlet conditions. The velocity and temperature fields are presented and the rates of their decay at jet centerline are noted. The velocity vectors of a main flow and secondary flow are illustrated. Also effect of aspect ratio on mixing in rectangular cross... 

    Oxygen barrier LDPE/LLDPE/organoclay nano-composite films for food packaging

    , Article Macromolecular Symposia ; Volume 274, Issue 1 , 2008 , Pages 22-27 ; 10221360 (ISSN) Dadbin, S ; Noferesti, M ; Frounchi, M ; Sharif University of Technology
    2008
    Abstract
    This study intends to replace polyethylene multi-layer films used in food packaging industry with single-layer polyethylene nanocomposites films. Nanocomposites of LDPE/LLDPE/ montmorillonite organoclay were prepared by melt compounding in a twin extruder and then film blown to prepare thin films. LLDPE-g-MA was used as compatibilizer to achieve better interaction between the blend and organoclay. Various compositions of organoclay and compatibilizer were prepared. The structure of nanocomposites was characterized by XRD and TEM. Permeability properties were measured using a permeability measuring set-up and aspect ratio of the particles was evaluated using permeability data. The results... 

    The effect of soil-structure interaction on damage index of buildings

    , Article Engineering Structures ; Volume 30, Issue 6 , 2008 , Pages 1491-1499 ; 01410296 (ISSN) Nakhaei, M ; Ali Ghannad, M ; Sharif University of Technology
    2008
    Abstract
    The effect of Soil-Structure Interaction (SSI) on Park and Ang Damage Index in a Bilinear-SDOF model is investigated under seismic loading. This is done through an extensive parametric study. Two non-dimensional parameters are used as the key parameters which control the severity of SSI: (1) a non-dimensional frequency as the structure-to-soil stiffness ratio index and (2) the aspect ratio of the structure. The soil beneath the structure is considered as a homogeneous elastic half space and is modeled using the concept of Cone Models. The system is then subjected to three different earthquake ground motions as the representative motions recorded on different soil conditions. The analysis is... 

    Analysis of functionally graded cylindrical panel under mechanical loading

    , Article ASME International Mechanical Engineering Congress and Exposition, IMECE 2007, Seattle, WA, 11 November 2007 through 15 November 2007 ; Volume 10 PART B , 2008 , Pages 867-876 ; 0791843041 (ISBN); 9780791843048 (ISBN) Ghaderi, P ; Fathizadeh, A ; Bankehsaz, M ; Sharif University of Technology
    2008
    Abstract
    In this paper a semi-analytical method is developed to analyze functionally graded cylindrical panels. In this method, the radial domain is divided into some finite sub-domains and the material properties are assumed to be constant in each subdomain. Imposing the continuity conditions at the interface of the adjacent sub-domains, together with the global boundary conditions, a set of linear algebraic equations are derived. Solving the linear algebraic equations, the elastic response for the thick-walled FG cylindrical panel is obtained. The method can be used for all material properties variations but in present study, material properties are assumed vary with Mori-Tanaka estimation. Results... 

    Forced convective heat transfer in parallel flow multilayer microchannels

    , Article Journal of Heat Transfer ; Volume 129, Issue 9 , 2007 , Pages 1230-1236 ; 00221481 (ISSN) Saidi, M. H ; Hajiaghaee Khiabani , R ; Sharif University of Technology
    2007
    Abstract
    In this paper, the effect of increasing the number of layers on improving the thermal performance of microchannel heat sinks is studied. In this way, both numerical and analytical methods are utilized. The analytical method is based on the porous medium assumption. Here, the modified Darcy equation and the energy balance equations are used. The method has led to an analytical expression presenting the average dimensionless temperature field in the multilayer microchannel heat sink. The effects of different parameters such as aspect ratio, porosity, channel width, and the solid properties on the thermal resistance are described. The results for single layer and multilayer heat sinks are... 

    Scattering of SH-waves by an elliptic cavity/crack beneath the interface between functionally graded and homogeneous half-spaces via multipole expansion method

    , Article Journal of Sound and Vibration ; Volume 435 , 2018 , Pages 372-389 ; 0022460X (ISSN) Ghafarollahi, A ; Shodja, H. M ; Sharif University of Technology
    Academic Press  2018
    Abstract
    In this study, based on multipole expansion method an analytical treatment is presented for the anti-plane scattering of SH-waves by an arbitrarily oriented elliptic cavity/crack which is embedded near the interface between exponentially graded and homogeneous half-spaces. The cavity is embedded within the inhomogeneous half-space. The boundary value problem of interest is solved by constructing an appropriate set of multipole functions which satisfy (i) the governing equation in each half-space, (ii) the continuity conditions across the interface between the two half-spaces, and (iii) the far-field radiation and regularity conditions. The analytical expressions for the scattered... 

    Electrokinetic mixing at high zeta potentials: Ionic size effects on cross stream diffusion

    , Article Journal of Colloid and Interface Science ; Volume 442 , 2015 , Pages 8-14 ; 00219797 (ISSN) Ahmadian Yazdi, A ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    Academic Press Inc  2015
    Abstract
    The electrokinetic phenomena at high zeta potentials may show several unique features which are not normally observed. One of these features is the ionic size (steric) effect associated with the solutions of high ionic concentration. In the present work, attention is given to the influences of finite ionic size on the cross stream diffusion process in an electrokinetically actuated Y-shaped micromixer. The method consists of a finite difference based numerical approach for non-uniform grid which is applied to the dimensionless form of the governing equations, including the modified Poisson-Boltzmann equation. The results reveal that, neglecting the ionic size at high zeta potentials gives... 

    Well-designed Ag/ZnO/3D graphene structure for dye removal: Adsorption, photocatalysis and physical separation capabilities

    , Article Journal of Colloid and Interface Science ; Volume 537 , 2019 , Pages 66-78 ; 00219797 (ISSN) Kheirabadi, M ; Samadi, M ; Asadian, E ; Zhou, Y ; Dong, C ; Zhang, J ; Moshfegh Zaker, A. R ; Sharif University of Technology
    Academic Press Inc  2019
    Abstract
    In this research, adsorption and photocatalytic degradation process were utilized to remove organic dye from wastewater. To accomplish that, a newly-designed ternary nanostructure based on Ag nanoparticles/ZnO nanorods/three-dimensional graphene network (Ag NPs/ZnO NRs/3DG) was prepared using a combined hydrothermal-photodeposition method. The three-dimensional structure of graphene hydrogel as a support for growth of ZnO nanorods was characterized using field emission scanning electron microscopy (FESEM). In addition, diameter of silver nanoparticles grown on the ZnO nanorods with the average aspect ratio of 5 was determined in the range of 30–80 nm by using transmission electron microscopy... 

    Broadband and low-loss plasmonic Light trapping in dye-sensitized solar cells using micrometer-scale rodlike and spherical core-shell plasmonic particles

    , Article ACS Applied Materials and Interfaces ; Volume 8, Issue 25 , 2016 , Pages 16359-16367 ; 19448244 (ISSN) Malekshahi Byranvand, M ; Nemati Kharat, A ; Taghavinia, N ; Dabirian, A ; Sharif University of Technology
    American Chemical Society  2016
    Abstract
    Dielectric scattering particles have widely been used as embedded scattering elements in dye-sensitized solar cells (DSCs) to improve the optical absorption of the device. Here we systematically study rodlike and spherical core-shell silica@Ag particles as more effective alternatives to the dielectric scattering particles. The wavelength-scale silica@Ag particles with sufficiently thin Ag shell support hybrid plasmonic-photonic resonance modes that have low parasitic absorption losses and a broadband optical response. Both of these features lead to their successful deployment in light trapping in high-efficiency DSCs. Optimized rodlike silica@Ag@silica particles improve the power conversion... 

    Secondary flows, mixing, and chemical reaction analysis of droplet-based flow inside serpentine microchannels with different cross sections

    , Article Langmuir ; Volume 37, Issue 17 , 2021 , Pages 5118-5130 ; 07437463 (ISSN) Ghazimirsaeed, E ; Madadelahi, M ; Dizani, M ; Shamloo, A ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Chemical bioreactions are an important aspect of many recent microfluidic devices, and their applications in biomedical science have been growing worldwide. Droplet-based microreactors are among the attractive types of unit operations, which utilize droplets for enhancement in both mixing and chemical reactions. In the present study, a finite-volume-method (FVM) numerical investigation is conducted based on the volume-of-fluid (VOF) applying for the droplet-based flows. This multiphase computational modeling is used for the study of the chemical reaction and mixing phenomenon inside a serpentine microchannel and explores the effects of the aspect ratio (i.e., AR = height/width) of... 

    Providing Multicolor Plasmonic Patterns with Au@Ag Core-Shell Nanostructures for Visual Discrimination of Biogenic Amines

    , Article ACS Applied Materials and Interfaces ; Volume 13, Issue 17 , 2021 , Pages 20865-20874 ; 19448244 (ISSN) Orouji, A ; Ghasemi, F ; Bigdeli, A ; Hormozi Nezhad, M. R ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Biogenic amines (BAs) are known as substantial indicators of the quality and safety of food. Developing rapid and visual detection methods capable of simultaneously monitoring BAs is highly desired due to their harmful effects on human health. In the present study, we have designed a multicolor sensor array consisting of two types of gold nanostructures (i.e., gold nanorods (AuNRs) and gold nanospheres (AuNSs)) for the discrimination and determination of critical BAs (i.e., spermine (SM), tryptamine (TT), ethylenediamine (EA), tyramine (TR), spermidine (SD), and histamine (HT)). The design principle of the probe was based on the metallization of silver ions on the surface of AuNRs and AuNSs... 

    PH-Sensitive polydopamine–La (III) complex decorated on carbon nanofiber toward on-demand release functioning of epoxy anti-corrosion coating

    , Article Langmuir ; Volume 38, Issue 38 , 2022 , Pages 11707-11723 ; 07437463 (ISSN) Ghaderi, M ; Saadatabadi, A. R ; Mahdavian, M ; Haddadi, S. A ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    The high aspect ratio and unique thermal and electrical characteristics of carbon nanofiber (CNF) made it an ideal physical barrier against the penetration of corrosive ions. However, the poor compatibility of the CNF with the polymer matrix and the lack of active corrosion inhibitors are the key limitations of this nanomaterial, resulting in short-term anti-corrosion resistance. An intelligent self-healing epoxy (EP) coating, including CNF modified with a polydopamine (PDA)-La3+ complex, was successfully fabricated to overcome these issues. Electrochemical impedance spectroscopy (EIS) evaluation implied that mild steel (MS) submerged in a 3.5 wt % NaCl solution containing the CNF-PDA-La... 

    How does a microfluidic platform tune the morphological properties of polybenzimidazole nanoparticles?

    , Article Journal of Physical Chemistry B ; Volume 126, Issue 1 , 2022 , Pages 308-326 ; 15206106 (ISSN) Mehdizadeh Chellehbari, Y ; Sayyad Amin, J ; Zendehboudi, S ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Microfluidic synthesis methods are among the most promising approaches for controlling the size and morphology of polymeric nanoparticles (NPs). In this work, for the first time, atomistic mechanisms involved in morphological changes of polybenzimidazole (PBI) NPs in microfluidic media are investigated. The multiscale molecular dynamic (MD) simulations are validated with the literature modeling and experimental data. A good agreement is obtained between the molecular modeling results and experimental data. The effects of mixing time, solvent type, dopant, and simulation box size at the molecular level are investigated. Mixing time has a positive impact on the morphology of the PBI NPs.... 

    Numerical modeling of instability and breakup of elliptical liquid jets

    , Article AIAA Journal ; Volume 58, Issue 6 , June , 2020 , Pages 2442-2449 Morad, M. R ; Nasiri, M ; Amini, G ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2020
    Abstract
    Numerical simulations are performed to provide an in-depth insight into the effect of instabilities on liquid jets discharging from elliptical orifices. The axis-switching phenomenon and breakup are simulated and characterized under the effect of disturbances imposed at the nozzle exit. The simulations are based on the volume of fluid approach and an adaptive meshing. A range of orifice aspect ratios from 1 to 4 at the Rayleigh breakup regime is considered. The evolution of the jet cross section and axis switching under the influence of disturbances is compared with that of nonperturbed elliptical jets. It is found that the axis-switching repetition and breakup length exponentially decrease... 

    Microflow in lid-driven microcavity with various aspect ratios

    , Article 46th AIAA Aerospace Sciences Meeting and Exhibit ; 2008 ; 9781563479373 (ISBN) Darbandi, M ; Daghighi, Y ; Vakilipour, S ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2008
    Abstract
    In this work, a finite-volume-element method1-4 is suitably extended to simulate the rarefied gas flow in lid-driven cavities with different height to width ratios. The flow conditions are chosen in a manner to cover the free molecular transition regime to the continuum one. As the hydrodynamic diameter of a driven cavity becomes comparable with the mean free path of the gas molecules in the cavity, the flow can no longer be considered as being in thermodynamic equilibrium; hence, a variety of non-equilibrium or rarefaction effects emerge. In this study, we show that the non-equilibrium effects in lid-driven cavity can be encountered and they become more serious in lower Knudsen numbers. We... 

    Universal rotation of nanowires in static uniform electric fields in viscous dielectric liquids

    , Article Applied Physics Letters ; Volume 113, Issue 6 , 2018 ; 00036951 (ISSN) Farain, K ; Esfandiar, A ; Moshfegh, A. Z ; Sharif University of Technology
    American Institute of Physics Inc  2018
    Abstract
    The wide utilization of nanomanipulation as a promising approach in microorganisms, nanoelectromechanical systems, and assembly of nanostructures remarks the importance of nanostructures' motion in electric fields. Here, we study the rotational dynamics of metallic and non-metallic nanowires (NWs) in a static uniform electric field in viscous dielectric liquids. For metallic NWs, it has been theoretically shown that the electric field-induced rotation is practically independent of the geometrical dimensions and the electrical properties of NWs. Our experimental results for suspended silver (Ag) NWs in microscope oil are perfectly in agreement with this model. However, in the case of TiO2... 

    Inertial particle focusing in serpentine channels on a centrifugal platform

    , Article Physics of Fluids ; Volume 30, Issue 1 , 2018 ; 10706631 (ISSN) Shamloo, A ; Mashhadian, A ; Sharif University of Technology
    American Institute of Physics Inc  2018
    Abstract
    Inertial particle focusing as a powerful passive method is widely used in diagnostic test devices. It is common to use a curved channel in this approach to achieve particle focusing through balancing of the secondary flow drag force and the inertial lift force. Here, we present a focusing device on a disk based on the interaction of secondary flow drag force, inertial lift force, and centrifugal forces to focus particles. By choosing a channel whose cross section has a low aspect ratio, the mixing effect of the secondary flow becomes negligible. To calculate inertial lift force, which is exerted on the particle from the fluid, the interaction between the fluid and particle is investigated... 

    Comparison of logarithmic, elliptic, and conical helical spiral for isolation of circulating tumor cells based on inertial method

    , Article Physics of Fluids ; Volume 34, Issue 9 , 2022 ; 10706631 (ISSN) Shamloo, A ; Mozhdehbakhsh Mofrad, Y ; Safari, M ; Naseri, T ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    Cancer is one of the most significant causes of death in the world. It has been shown that the role of circulating tumor cells (CTCs) in the early detection of cancer is crucial. Since the number of these cancerous cells in blood is very rare, the inertial microfluidic devices are one of the best candidates for the isolation of CTCs because they result in a high throughput process. Consequently, they can process a large volume of blood in a short time. Despite extensive computational and experimental studies on inertial microfluidic platforms, the impact of the curvature has not been thoroughly investigated during separation. In this paper, the feasibility of isolation of CTCs for... 

    Equilibrium state of a cylindrical particle with flat ends in nematic liquid crystals

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 91, Issue 1 , January , 2015 ; 15393755 (ISSN) Hashemi, S. M ; Ejtehadi, M. R ; Sharif University of Technology
    American Physical Society  2015
    Abstract
    A continuum theory is employed to numerically study the equilibrium orientation and defect structures of a circular cylindrical particle with flat ends under a homeotropic anchoring condition in a uniform nematic medium. Different aspect ratios of this colloidal geometry from thin discotic to long rodlike shapes and several colloidal length scales ranging from mesoscale to nanoscale are investigated. We show that the equilibrium state of this colloidal geometry is sensitive to the two geometrical parameters: aspect ratio and length scale of the particle. For a large enough mesoscopic particle, there is a specific asymptotic equilibrium angle associated to each aspect ratio. Upon reducing the...