Loading...
Search for: atoms
0.013 seconds
Total 643 records

    Pd 2+ reduction and gasochromic properties of colloidal tungsten oxide nanoparticles synthesized by pulsed laser ablation

    , Article Applied Physics A: Materials Science and Processing ; Volume 108, Issue 2 , 2012 , Pages 401-407 ; 09478396 (ISSN) Garavand, N. T ; Mahdavi, S. M ; Iraji Zad, A ; Sharif University of Technology
    Springer  2012
    Abstract
    Tungsten oxide nanoparticles were fabricated by a pulsed laser ablation method in deionized water using the first harmonic of a Nd:YAG laser (λ = 1064 nm) at three different laser pulse energies (E1 = 160, E2 = 370 and E3 = 500 mJ/pulse), respectively. The aim is to investigate the effect of laser pulse energy on the size distribution and gasochromic property of colloidal nanoparticles. The products were characterized by dynamic light scattering (DLS), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and UV-Vis spectroscopy. The results indicated that WO 3 nanoparticles were formed. After ablation, a 0.2 g/l PdCl 2 solution was added to activate the solution against... 

    Electrodeposition of long gold nanotubes in polycarbonate templates as highly sensitive 3D nanoelectrode ensembles

    , Article Electrochimica Acta ; Volume 75 , 2012 , Pages 157-163 ; 00134686 (ISSN) Bahari Mollamahalle, Y ; Ghorbani, M ; Dolati, A ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Electrodeposition of long and well-defined gold nanotubes in polycarbonate (PC) templates is still a major concern due to pore blockage problems. In the present study, we introduce a novel method for electrodeposition of long gold nanotubes within the pores of PC templates for the first time. In order to deposit gold atoms onto the pore walls preferentially, pore walls were functionalized with a coupling agent. Short and thin Ni nanotubes were then electrodeposited at the bottom of the pores. Gold nanotubes were subsequently electrodeposited at constant potentials and low solution concentrations. The morphology of nanotubes was characterized by electron microscopy and their formation... 

    Optomechanical superpositions via nested interferometry

    , Article Physical Review Letters ; Volume 109, Issue 2 , November , 2012 ; 00319007 (ISSN) Pepper, B ; Ghobadi, R ; Jeffrey, E ; Simon, C ; Bouwmeester, D ; Sharif University of Technology
    2012
    Abstract
    We present a scheme for achieving macroscopic quantum superpositions in optomechanical systems by using single photon postselection and detecting them with nested interferometers. This method relieves many of the challenges associated with previous optical schemes for measuring macroscopic superpositions and only requires the devices to be in the weak coupling regime. It requires only small improvements on currently achievable device parameters and allows the observation of decoherence on a time scale unconstrained by the system's optical decay time. Prospects for observing novel decoherence mechanisms are discussed  

    First principles study of oxygen adsorption on nickel-doped graphite

    , Article Molecular Physics ; Volume 110, Issue 13 , Feb , 2012 , Pages 1437-1445 ; 00268976 (ISSN) Nahali, M ; Gobal, F ; Sharif University of Technology
    2012
    Abstract
    Density functional theory is used in a spin-polarized plane wave pseudopotential implementation to investigate molecular oxygen adsorption and dissociation on graphite and nickel-doped graphite surfaces. Molecular oxygen physisorbs on graphite surface retaining its magnetic property. The calculated adsorption energy is consistent with the experimental value of 0.1eV. It is found that substituting a carbon atom of the graphite surface by a single doping nickel atom (2.8% content) makes the surface active for oxygen chemisorption. It is found that the molecular oxygen never adsorbs on doping nickel atom while it adsorbs and dissociates spontaneously into atomic oxygens on the carbon atoms... 

    Ionic liquid based on α-amino acid anion and N7,N9-dimethylguaninium cation ([dMG][AA]): Theoretical study on the structure and electronic properties

    , Article Journal of Physical Chemistry A ; Volume 116, Issue 22 , April , 2012 , Pages 5436-5444 ; 10895639 (ISSN) Shakourian Fard, M ; Fattahi, A ; Bayat, A ; Sharif University of Technology
    2012
    Abstract
    The interactions between five amino acid based anions ([AA] - (AA = Gly, Phe, His, Try, and Tyr)) and N7,N9-dimethylguaninium cation ([dMG] +) have been investigated by the hybrid density functional theory method B3LYP together with the basis set 6-311++G(d,p). The calculated interaction energy was found to decrease in magnitude with increasing side-chain length in the amino acid anion. The interaction between the [dMG] + cation and [AA] - anion in the most stable configurations of ion pairs is a hydrogen bonding interaction. These hydrogen bonds (H bonds) were analyzed by the quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analysis. Finally, several correlations... 

    Molecular structure and character of bonding of mono and divalent metal cations (Li +, Na +, K +, Mg 2+, Ca 2+, Zn 2+, and cu +) with guanosine: AIM and NBO analysis

    , Article Structural Chemistry ; Volume 23, Issue 3 , June , 2012 , Pages 613-626 ; 10400400 (ISSN) Ahmadi, M. S ; Shakourian Fard, M ; Fattahi, A ; Sharif University of Technology
    2012
    Abstract
    The B3LYP/6-311++G (d,p) density functional approach was used to study the gas-phase metal affinities of Guanosine (ribonucleoside) for the Li +, Na +, K +, Mg 2+, Ca 2+, Zn 2+, and Cu + cations. In this study we determine coordination geometries, binding strength, absolute metal ion affinities, and free energies for the most stable products. We have also compared the results for Guanosine, with our previously reported results for 20-Deoxyguanosine. Based on the results, it is obvious that MIA is strongly dependent on the charge-to-size ratio of the cation. Guanosine interacts more strongly with Zn 2+ than do with Mg 2+, Ca 2+, and Cu? and therefore stronger interactions lead to higher MIA.... 

    Influence of the water molecules (n 5 1-6) on the interaction between Li +, Na +, K + cations and indole molecule as tryptophan amino acid residue

    , Article Structural Chemistry ; Volume 23, Issue 3 , 2012 , Pages 857-865 ; 10400400 (ISSN) Shakourian Fard, M ; Nasiri, M ; Fattahi, A ; Vafaeezadeh, M ; Sharif University of Technology
    2012
    Abstract
    Influence of the addition of water molecules (n = 1-6) on the interaction energy between Li +, Na +, K + cations and indole molecule as tryptophan amino acid residue is considered at MP2(FULL)/6-311++G(d, p)//B3LYP/6-311++G(d,p) levels of theory. The calculations suggest that the size of cation and the number of water molecules are two important factors that affect the interaction energy between the hydrated metal cation and indole molecule. The strength of cation-π interactions get substantially reduced when the metal ion is solvated or the size of metal cation increases. Quantum theory of atoms in molecules analysis of cation-π interaction indicates that there is a correlation between the... 

    A parametric study using two design methodologies for pressure jet and swirl injectors

    , Article IEEE Aerospace Conference Proceedings ; 2012 ; 1095323X (ISSN) ; 9781457705564 (ISBN) Mazaheri, K ; Morad, M. R ; Shakeri, A. R ; Sharif University of Technology
    2012
    Abstract
    One of the most important subsystems in the air-breathing engines is the atomizers, which break the fuel into many droplets. It is well known that atomization quality has a significant influence on combustion characteristics such as stability limits, efficiency, and pollutant emission. Both jet and swirl injectors are applicable in gas turbine engines. The latter have been widely used for combustion chambers and the former are usually employed for fuel injection in the afterburner part. Since experimental and numerical study of atomizers could be complex and costly, a design methodology of atomizers based on empirical relations is still very advantageous and effective in reducing... 

    Interactions of glutathione tripeptide with gold cluster: Influence of intramolecular hydrogen bond on complexation behavior

    , Article Journal of Physical Chemistry A ; Volume 116, Issue 17 , 2012 , Pages 4338-4347 ; 10895639 (ISSN) Tehrani, Z. A ; Jamshidi, Z ; Javan, M. J ; Fattahi, A ; Sharif University of Technology
    2012
    Abstract
    Understanding the nature of the interaction between metal nanoparticles and biomolecules has been important in the development and design of sensors. In this paper, structural, electronic, and bonding properties of the neutral and anionic forms of glutathione tripeptide (GSH) complexes with a Au 3 cluster were studied using the DFT-B3LYP with 6-31+G**-LANL2DZ mixed basis set. Binding of glutathione with the gold cluster is governed by two different kinds of interactions: Auâ€"X (X = N, O, and S) anchoring bond and Au··•·•H-X nonconventional hydrogen bonding. The influence of the intramolecular hydrogen bonding of glutathione on the interaction of this peptide with the gold cluster has been... 

    Effects of crystal orientation on the tensile and shear deformation of nickel-silicon interfaces: A molecular dynamics simulation

    , Article Materials Science and Engineering A ; Volume 543 , 2012 , Pages 217-223 ; 09215093 (ISSN) Amini, H ; Simchi, A ; Kokabi, A. H ; Sharif University of Technology
    2012
    Abstract
    Atomistic simulation was used to study the deformation and fracture mechanisms of Ni-Si interfaces under tensile and shear loads dependent on the crystal structure of interface zone. Modified embedded atom method (MEAM) potential was utilized for molecular dynamics (MD) modeling. The simulation includes analysis of common neighbors, coordination number, least-square atomic local strain, and radial distribution function. The profound effect of interface crystallography on the tensile and shear deformation is shown. The highest tensile strength is obtained for interfaces with high plane density due to lowest atomic disorder while under shear loading planes with low density exhibit a high local... 

    Solid phase extraction of trace amounts of Pb(II) in opium, heroin, lipstick, plants and water samples using modified magnetite nanoparticles prior to its atomic absorption determination

    , Article Journal of the Iranian Chemical Society ; Volume 9, Issue 2 , 2012 , Pages 171-180 ; 1735207X (ISSN) Karimi, M. A ; Hatefi Mehrjardi, A ; Mohammadi, S. Z ; Mohadesi, A ; Mazloum Ardakani, M ; Hormozi Nezhad, M. R ; Kabir, A. A ; Sharif University of Technology
    2012
    Abstract
    A new, simple, fast and reliable solid-phase extraction method has been developed for separation/preconcentration of trace amounts of Pb(II) using dithizone/sodium dodecyl sulfate-immobilized on alumina-coated magnetite nanoparticles, and its determination by flame atomic absorption spectrometry (FAAS) and graphite furnace atomic absorption spectrometry (GFAAS) after eluting with 4.0 mol L -1 HNO 3. Optimal experimental conditions including pH, sample volume, eluent concentration and volume, and co-existing ions have been studied and established. Under the optimal experimental conditions, the preconcentration factor, detection limit, linear range and relative standard deviation of Pb(II)... 

    Lasing without population inversion in an Er 3+-doped YAG crystal

    , Article Journal of Modern Optics ; Volume 59, Issue 5 , Nov , 2012 , Pages 446-454 ; 09500340 (ISSN) Sahrai, M ; Asadpour, S. H ; Eslami Majd, A ; Sadighi Bonabi, R ; Sharif University of Technology
    2012
    Abstract
    Two atomic models are proposed for an Er 3+-doped YAG crystal with application to lasing with and without population inversion. It is shown how an incoherent pumping field and coherent control coupling field can produce a laser in the presence and absence of population inversion  

    The use of a cis-dioxomolybdenum(VI) dinuclear complex with quadradentate 1,4-benzenediylbis(benzyldithiocarbamate)(2-) as model compound for the active site of oxo transfer molybdoenzymes: Reactivity, kinetics, and catalysis

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 88 , 2012 , Pages 210-215 ; 13861425 (ISSN) Moradi Shoeili, Z ; Boghaei, D. M ; Sharif University of Technology
    2012
    Abstract
    Dinuclear cis-dioxomolybdenum(VI) complex [{MoO 2(Bz 2Benzenediyldtc)} 2] coordinated by a quadradentate dithiocarbamate (Bz 2Benzenediyldtc 2- = 1,4-benzenediylbis(benzyldithiocarbamate)(2-)) has been prepared and characterized by elemental analysis, 13C NMR, IR and UV-vis spectroscopy. The kinetics of the oxygen atom transfer between [{MoO 2(Bz 2Benzenediyldtc)} 2] and PPh 3 was studied spectrophotometrically in CH 2Cl 2 medium at 520 nm and four different temperatures, 288, 293, 298 and 303 K, respectively. The reaction follows second order kinetics with the rate constant k = 0.163(2) M -1 S -1 and its increasingly strong absorption at 520 nm clearly indicate the formation of a μ-oxo... 

    Temperature-dependent multi-scale modeling of surface effects on nano-materials

    , Article Mechanics of Materials ; Volume 46 , 2012 , Pages 94-112 ; 01676636 (ISSN) Khoei, A. R ; Ghahremani, P ; Sharif University of Technology
    Abstract
    In this paper, a novel temperature-dependent multi-scale method is developed to investigate the role of temperature on surface effects in the analysis of nano-scale materials. In order to evaluate the temperature effect in the micro-scale (atomic) level, the temperature related Cauchy-Born hypothesis is implemented by employing the Helmholtz free energy, as the energy density of equivalent continua relating to the inter-atomic potential. The multi-scale technique is applied in atomistic level (nano-scale) to exhibit the temperature related characteristics. The first Piola-Kirchhoff stress and tangential stiffness tensor are computed, as the first and second derivatives of the free energy... 

    Theoretical study of borazine: cation-π (Be 2+, Mg 2+, and Ca 2+) interaction

    , Article Structural Chemistry ; 2012 , Pages 1-7 ; 10400400 (ISSN) Fathi Rasekh, M ; Sharif University of Technology
    2012
    Abstract
    The geometries of the complexes of Be 2+, Mg 2+, and Ca 2+ metal cations with borazine ring were studied. The complexes were optimized at the B3LYP level and the 6-311++G(d,p) basis set. Then, the interaction energies corrected by basis set super position error were calculated in the same level. The results show that interaction energy is strongly dependent on the charge-to-size ratio of the cation. Therefore, Be 2+ cation has the most interaction energy value with respect to Mg 2+ and Ca 2+ metal cations. Natural bond orbital analysis was performed to calculate the charge transfer and natural population analysis of the complexes. Quantum theory of atoms in molecules was also applied to... 

    Interaction of cations with 2′-deoxythymidine nucleoside and analysis of the nature and strength of cation bonds

    , Article Journal of Physical Organic Chemistry ; Volume 25, Issue 2 , JAN , 2012 , Pages 153-161 ; 08943230 (ISSN) Shakourian Fard, M ; Fattahi, A ; Jamshidi, Z ; Sharif University of Technology
    2012
    Abstract
    Binding of Mg 2+, Ca 2+, Zn 2+, and Cu + metal ions with 2′-deoxythymidine (dT) nucleoside was studied using a density functional theory method and a 6-311++G(d,p) basis set. This work demonstrated that the interaction of dT with these cations is tri-coordinated · (O2, O4′, O5′). Among the four types of cations, Zn 2+ cation exhibited the most tendency to interact with the dT. Cations via their interaction with dT can affect the N-glycosidic bond length, the values of pseudorotation of the sugar ring, the orientation of the base unit with respect to the sugar ring, and the acidity of the O5′H, O3′H, and N3H groups in the dT nucleoside. Natural bond orbital analysis was performed to calculate... 

    Theoretical investigation on the structural and electronic properties of complexes formed by thymine and 2'-deoxythymidine with different anions

    , Article Structural Chemistry ; Volume 23, Issue 1 , July , 2012 , Pages 17-28 ; 10400400 (ISSN) Shakourian Fard, M ; Fattahi, A ; Sharif University of Technology
    2012
    Abstract
    Hydrogen bonding interactions between thymine nucleobase and 2'-deoxythymidine nucleoside (dT) with some biological anions such as F - (fluoride), Cl - (chloride), OH - (hydroxide), and NO 3 - (nitrate) have been explored theoretically. In this study, complexes have been studied by density functional theory (B3LYP method and 6-311++G (d,p) basis set). The relevant geometries, energies, and characteristics of hydrogen bonds (H-bonds) have been systematically investigated. There is a correlation between interaction energy and proton affinity for complexes of thymine nucleobase. The nature of all the interactions has been analyzed by means of the natural bonding orbital (NBO) and quantum theory... 

    Optimal Ag concentration for H2 production via Ag:TiO 2 nanocomposite thin film photoanode

    , Article International Journal of Hydrogen Energy ; Volume 37, Issue 4 , Feb , 2012 , Pages 3056-3065 ; 03603199 (ISSN) Naseri, N ; Kim, H ; Choi, W ; Moshfegh, A. Z ; Sharif University of Technology
    Abstract
    TiO2 thin films containing different concentrations of Ag nanoparticles have been synthesized by sol-gel method. According to UV-visible spectra, presence of an intense surface plasmon resonance peak at 490 nm of wavelength indicated formation of silver nanoparticles in the TiO2 films. Based on atomic force microscopy (AFM) analysis, the surface roughness and the effective surface ratio increased by increasing the Ag mol%. Moreover, scanning electron microscopy (SEM) images showed formation of Ag nanoparticles on the surface for the samples containing high Ag concentration. X-ray diffraction (XRD) patterns revealed that the size of Ag nanocrystals increased by increasing the Ag content in... 

    Van der Waals energy surface of a carbon nanotube sheet

    , Article Solid State Communications ; Volume 152, Issue 3 , February , 2012 , Pages 225-230 ; 00381098 (ISSN) Motahari, S ; Shayeganfar, F ; Neek Amal, M ; Sharif University of Technology
    Abstract
    The van der Walls interaction between a carbon nanotube sheet (CNTS) and a rare gas atom, is studied using both atomistic and continuum approaches. We present analytical expressions for the van der Waals energy of continuous nanotubes interacting with a rare gas atom. It is found that the continuum approach does not properly treat the effect of atomistic configurations on the energy surfaces. The energy barriers are small as compared to the thermal energy, which implies the free motion above the CNTS in heights about one nanometer. In contrast to the energy surface of a graphene sheet, the honeycomb lattice structure in the energy surface of a CNTS is imperceivable. Defects alter the energy... 

    Photocatalytic activity of TiO 2-capped ZnO nanoparticles

    , Article Journal of Materials Science: Materials in Electronics ; Volume 23, Issue 2 , 2012 , Pages 361-369 ; 09574522 (ISSN) Lak, A ; Simchi, A ; Nemati, Z. A ; Sharif University of Technology
    Abstract
    Using a combined hydrothermal and sol-gel route, TiO 2 -capped ZnO nanoparticles with an average size of 60 nm were prepared. The titania shell was amorphous with a thickness of ∼10 nm. Formation of Zn 2TiO 4 phase at higher calcination temperature was noticed. Effects of Ti/Zn molar ratio and coating time on the thickness of TiO 2 shell and the photoactivity of the particles for decolorization of Methylene Blue (MB) under UV lamp irradiation (3 mW/cm 2) were investigated. The nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, fourier-transform infrared spectrometry (FTIR), diffuse reflectance spectroscopy (DLS), and atomic absorption spectroscopy....