Loading...
Search for: beams-and-girders
0.006 seconds
Total 213 records

    Anti-plane shear of an arbitrary oriented crack in a functionally graded strip bonded with two dissimilar half-planes

    , Article Theoretical and Applied Fracture Mechanics ; Volume 54, Issue 3 , 2010 , Pages 180-188 ; 01678442 (ISSN) Torshizian, M. R ; Kargarnovin, M. H ; Sharif University of Technology
    2010
    Abstract
    An internal crack located within a functionally graded material (FGM) strip bonded with two dissimilar half-planes and under an anti-plane load is considered. The crack is oriented in an arbitrary direction. The material properties of strip are assumed to vary exponentially in the thickness direction and two half-planes are assumed to be isotropic. Governing differential equations are derived and to reduce the difficulty of the problem dealing with solution of a system of singular integral equations Fourier integral transform is employed. Semi closed form solution for the stress distribution in the medium is obtained and mode III stress intensity factor (SIF), at the crack tip is calculated... 

    An investigation to effective parameters on the damage of dual phase steels by acoustic emission using energy ratio

    , Article World Academy of Science, Engineering and Technology ; Volume 46 , 2010 , Pages 638-643 ; 2010376X (ISSN) Fallahi, A ; Khamedi, R ; Sharif University of Technology
    2010
    Abstract
    Dual phase steels (DPS)s have a microstructure consisting of a hard second phase called Martensite in the soft Ferrite matrix. In recent years, there has been interest in dual-phase steels, because the application of these materials has made significant usage; particularly in the automotive sector Composite microstructure of (DPS)s exhibit interesting characteristic mechanical properties such as continuous yielding, low yield stress to tensile strength ratios(YS/UTS), and relatively high formability; which offer advantages compared with conventional high strength low alloy steels(HSLAS). The research dealt with the characterization of damage in (DPS)s. In this study by review the mechanisms... 

    Application of endurance time method in performance-based design of steel moment frames

    , Article Scientia Iranica ; Volume 17, Issue 6 A , 2010 , Pages 482-492 ; 10263098 (ISSN) Mirzaee, A ; Estekanchi, H. E ; Vafai, A ; Sharif University of Technology
    2010
    Abstract
    In this paper, application of the Endurance Time (ET) method in the performance-based design of steel moment frames is explained from a conceptual viewpoint. ET is a new dynamic pushover procedure that predicts the seismic performance of structures by subjecting them to a gradually intensifying dynamic action and monitoring their performance at various excitation levels. Structural responses at different excitation levels are obtained in a single time-history analysis, thus significantly reducing the computational demand. Results from three analyses are averaged to reduce the random scattering of the results at each time step. A target performance curve is presented based on the required... 

    Nonlinear thermoelastic stress analysis of the rotating FGM disk with variable thickness and temperature-dependent material properties using finite element method

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009 ; Volume 14 , 2010 , Pages 359-364 ; 9780791843871 (ISBN) Azadi, M ; Damircheli, M ; Sharif University of Technology
    Abstract
    In this paper, nonlinear radial and hoop thermoelastic stress analysis of rotating disk made of functionally graded material (FGM) with variable thickness is carried out by using the finite element method. In this method, one-dimensional second order elements with three nodes have been used. The geometrical and boundary conditions are in the shape of nonexistence of the pressure (zero radial stress) in both external and internal layers and zero displacement at the internal layer of rotating disk. Furthermore, it's assumed that heat distribution is as second order curve while material properties such as elasticity modulus, Poisson's ratio and thermal expansion coefficient vary by using a... 

    Vibration analysis of a rotating FGM cantilever ARM

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009 ; Volume 15 , 2010 , Pages 359-365 ; 9780791843888 (ISBN) Rahaeifard, M ; Moeini, S. A ; Kahrobaiyan, M. H ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    Functionally graded materials (FGMs) are inhomogeneous composites which are usually made of a mixture of metals and ceramics. Properties of these kinds of materials vary continuously and smoothly from a ceramic surface to a metallic surface in a specified direction of the structure. The gradient compositional variation of the constituents from one surface to the other provides an elegant solution to the problem of high transverse shear stresses that are induced when two dissimilar materials with large differences in material properties are bonded. FGMs have extracted much attention as advanced structural materials in recent years. In this paper, free vibration of a rotating FGM cantilever... 

    Enhancement of bond characteristics of ribbed-surface GFRP bars with concrete by using carbon fiber mat anchorage

    , Article Construction and Building Materials ; Volume 134 , 2017 , Pages 507-519 ; 09500618 (ISSN) Ashrafi, H ; Bazli, M ; Vatani Oskouei, A. V ; Sharif University of Technology
    Abstract
    The bond of fiber-reinforced polymer (FRP) reinforcement is expected to be more sensitive to the strength and geometry of the ribs than conventional steel reinforcement. In this study, the effect of carbon fiber mat anchorage on the pullout behavior of glass fiber-reinforced polymer (GFRP) bars embedded in normal concrete is studied. The studied parameters were the compressive strength of the concrete (16 MPa, 24 MPa, and 37 MPa), and, the length and diameter of the anchorage. In total, 15 variables were studied. Ribbed GFRP bars with 10 mm nominal diameter and 80 mm embedment length, ld, (which is 8 times the bar diameter) were considered. Based on the results for concretes with the... 

    Parametric analyses of multispan viscoelastic shear deformable beams under excitation of a moving mass

    , Article Journal of Vibration and Acoustics, Transactions of the ASME ; Volume 131, Issue 5 , 2009 , Pages 0510091-05100912 ; 10489002 (ISSN) Kiani, K ; Nikkhoo, A ; Mehri, B ; Sharif University of Technology
    2009
    Abstract
    This paper presents a numerical parametric study on design parameters of multispan viscoelastic shear deformable beams subjected to a moving mass via generalized moving least squares method (GMLSM). For utilizing Lagrange's equations, the unknown parameters of the problem are stated in terms of GMLSM shape functions and the generalized Newmark-β scheme is applied for solving the discrete equations of motion in time domain. The effects of moving mass weight and velocity, material relaxation rate, slenderness, and span number of the beam on the design parameters and possibility of mass separation from the base beam are scrutinized in some detail. The results reveal that for low values of beam... 

    Performance-based seismic design and assessment of low-rise steel special moment resisting frames with block slit dampers using endurance time method

    , Article Engineering Structures ; Volume 224 , 2020 Ahmadie Amiri, H ; Pournamazian Najafabadi, E ; Esmailpur Estekanchi, H ; Ozbakkaloglu, T ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Block Slit Dampers (BSDs) are recently developed metallic yielding dampers for passive structural control. This type of damping devices can provide designers with an option of using highly ductile systems, such as steel special moment resisting frames (steel SMRFs), in important structures located in regions of high seismicity. The aim of this study is to obtain a performance-based seismic design (PBSD) procedure for these devices, and to assess the seismic performance levels of low-rise steel SMRF equipped with BSDs using the endurance time (ET) dynamic analysis method. For this purpose, first, the simplified behavioral model of these devices was established based on the analysis of... 

    Nonlinear cylindrical bending analysis of shear deformable functionally graded plates under different loadings using analytical methods

    , Article International Journal of Mechanical Sciences ; Volume 50, Issue 12 , 2008 , Pages 1650-1657 ; 00207403 (ISSN) Navazi, H. M ; Haddadpour, H ; Sharif University of Technology
    2008
    Abstract
    An exact solution is presented for the nonlinear cylindrical bending and postbuckling of shear deformable functionally graded plates in this paper. A simple power law function and the Mori-Tanaka scheme are used to model the through-the-thickness continuous gradual variation of the material properties. The von Karman nonlinear strains are used and then the nonlinear equilibrium equations and the relevant boundary conditions are obtained using Hamilton's principle. The Navier equations are reduced to a linear ordinary differential equation for transverse deflection with nonlinear boundary conditions, which can be solved by exact methods. Finally, by solving some numeral examples for simply... 

    Semi-exact elastic solutions for thermo-mechanical analysis of functionally graded rotating disks

    , Article Composite Structures ; Volume 93, Issue 12 , 2011 , Pages 3239-3251 ; 02638223 (ISSN) Hassani, A ; Hojjati, M. H ; Farrahi, G ; Alashti, R. A ; Sharif University of Technology
    Abstract
    In this paper, distributions of stress and strain components of rotating disks with non-uniform thickness and material properties subjected to thermo-elastic loading under different boundary conditions are obtained by semi-exact methods of Liao's homotopy analysis method (HAM), Adomian's decomposition method and He's variational iteration method (VIM). The materials are assumed to be perfectly elastic and isotropic. A two dimensional plane stress analysis is used. The distribution of temperature over the disk radius is assumed to have power forms with the higher temperature at the outer surface. The results of the three methods are compared with those obtained by Runge-Kutta's numerical... 

    Innovative method in seismic design of slab-on-girder steel bridges

    , Article Journal of Constructional Steel Research ; Volume 64, Issue 12 , 2008 , Pages 1420-1435 ; 0143974X (ISSN) Lotfollahi, M ; Mofid, M ; Sharif University of Technology
    2008
    Abstract
    Most slab-on-girder steel bridges have been designed and constructed without seismic resistance consideration; as a result, their members, connections, and more commonly their substructure are not sized and detailed to provide the required ductile response needed during major earthquakes. A ductile seismic retrofit solution proposed in this investigation consist of converting of existing end diaphragms into ductile end diaphragms and replacing the end cross-frames and the lower lateral-braced panels adjacent to the supports by special ductile diaphragms. Consequently, this creates ductile fuses to protect the rest of the super- and substructure. This paper illustrates the typical seismic... 

    Mechanical properties of concrete containing a high volume of tire-rubber particles

    , Article Waste Management ; Volume 28, Issue 12 , 2008 , Pages 2472-2482 ; 0956053X (ISSN) Khaloo, A. R ; Dehestani, M ; Rahmatabadi, P ; Sharif University of Technology
    2008
    Abstract
    Due to the increasingly serious environmental problems presented by waste tires, the feasibility of using elastic and flexible tire-rubber particles as aggregate in concrete is investigated in this study. Tire-rubber particles composed of tire chips, crumb rubber, and a combination of tire chips and crumb rubber, were used to replace mineral aggregates in concrete. These particles were used to replace 12.5%, 25%, 37.5%, and 50% of the total mineral aggregate's volume in concrete. Cylindrical shape concrete specimens 15 cm in diameter and 30 cm in height were fabricated and cured. The fresh rubberized concrete exhibited lower unit weight and acceptable workability compared to plain concrete.... 

    Experimental and analytical model analysis of Babolsar's steel arch bridge

    , Article 3rd International Conference on Bridge Maintenance, Safety and Management - Bridge Maintenance, Safety, Management, Life-Cycle Performance and Cost, Porto, 16 July 2006 through 19 July 2006 ; 2006 , Pages 235-237 ; 0415403154 (ISBN); 9780415403153 (ISBN) Beygi, M. H. A ; Kazemi, M. T ; Lark, B ; Tabrizian, Z ; Sharif University of Technology
    Taylor and Francis/ Balkema  2006
    Abstract
    The paper presents the experimental and analytical model analysis of a steel-girder arch bridge. The field test is carried out by ambient vibration testing under traffic excitations. Both the peak picking method in the frequency domain and the stochastic subspace identification method in the time domain are used for the output-only model identification. A good agreement in identified frequencies has been found between the two methods. It is further demonstrated that the stochastic subspace method provides better mode shapes. The three-dimensional finite element models are constructed and an analytical model analysis is then performed to generate natural frequencies and mode shapes in the...