Loading...
Search for: beams-and-girders
0.008 seconds
Total 213 records

    Collapse assessment of steel moment frames using endurance time method

    , Article Earthquake Engineering and Engineering Vibration ; Volume 14, Issue 2 , 2015 , Pages 347-360 ; 16713664 (ISSN) Rahimi, E ; Estekanchi, H. E ; Sharif University of Technology
    Institute of Engineering Mechanics (IEM)  2015
    Abstract
    In endurance time (ET) method structures are subjected to a set of predesigned intensifying excitations. These excitations are produced in a way that their response spectrum, while complying with a specified spectrum, intensifies with time so they can be used approximately to simulate the average effects of several ground motions scaled to different intensities. In this paper applicability of the ET method for evaluating collapse potential of buildings is investigated. A set of four steel moment frames is used for collapse assessment. The process of using ET method in collapse evaluation is explained and the results are compared with incremental dynamic analysis (IDA) results. It is shown... 

    Nonlinear interstory drift contours for idealized forward directivity pulses using "modified fish-bone" models

    , Article Advances in Structural Engineering ; Volume 18, Issue 5 , May , 2015 , Pages 603-627 ; 13694332 (ISSN) Khalo, A. R ; Khosravi, H ; Jamnani, H. H ; Sharif University of Technology
    Multi-Science Publishing Co. Ltd  2015
    Abstract
    Four 5-, 10-, 20- and 30-story moment frames, representing low-, mid-, and two high-rise structures, were subjected to a great number of idealized directivity pulses. The amplitudes and periods of pulses vary from 0.02 g to 1.0 g and 0.5 to 12 sec, respectively. Over 1400 nonlinear dynamic analyses of low- to high-rise moment frames were performed which were feasible through using modified fish-bone model. The distribution of interstory drift along the height was studied and two applied contours were proposed: (i) the maximum interstory drift contour, and (ii) the critical story contour. These contours were demonstrated versus the ratio of natural period of the structure to the pulse period... 

    A model for the evolution of concrete deterioration due to reinforcement corrosion

    , Article Mathematical and Computer Modelling ; Volume 52, Issue 9-10 , November , 2010 , Pages 1403-1422 ; 08957177 (ISSN) Shodja, H. M ; Kiani, K ; Hashemian, A ; Sharif University of Technology
    2010
    Abstract
    One of the most crucial factors affecting the service life of reinforced concrete (RC) structures attacked by aggressive ions is reinforcement corrosion. As the steel corrosion progresses, crack propagation in concrete medium endangers the serviceability and the strength of RC structural members. In this study, a nonlinear mathematical model for determining the displacement and stress fields in RC structures subjected to reinforcement corrosion is introduced. For corrosion products, a nonlinear stress-strain relation which has been previously confirmed by experimental data is incorporated in the present analysis. In formulation of the governing equations for steel-rust-concrete composite,... 

    Numerical study of steel box girder bridge diaphragms

    , Article Earthquake and Structures ; Volume 11, Issue 4 , 2016 , Pages 681-699 ; 20927614 (ISSN) Maleki, S ; Mohammadinia, P ; Dolati, A ; Sharif University of Technology
    Techno Press  2016
    Abstract
    Steel box girders have two webs and two flanges on top that are usually connected with shear connectors to the concrete deck and are also known as tub girders. The end diaphragms of such bridges comprise of a stiffened steel plate welded to the inside of the girder at each end. The diaphragms play a major role in transferring vertical and lateral loads to the bearings and substructure. A review of literature shows that the cyclic behavior of diaphragms under earthquake loading has not been studied previously. This paper uses a nonlinear finite element model to study the behavior of the end diaphragms under gravity and seismic loads. Different bearing device and stiffener configurations have... 

    Experimental evaluation of steel moment resisting frames with a nonlinear shear fuse

    , Article Joint Geotechnical and Structural Engineering Congress 2016, 14 February 2016 through 17 February 2016 ; 2016 , Pages 624-634 ; 9780784479742 (ISBN) Mahmoudi, F ; Dolatshahi, K.M ; Mahsuli, M ; Shahmohammadi, A ; Nikoukalam, M.T ; Sharif University of Technology
    American Society of Civil Engineers (ASCE)  2016
    Abstract
    This paper presents the experimental investigation of an innovative energy dissipation system in steel moment resisting frames. In the proposed system, a replaceable beam with a smaller cross-section than that of the main beam is placed at the mid span of the beam designed to act as a shear fuse. This shifts the location of the plastic hinging from the end of the beam to the middle since the shear fuse yields in shear prior to the flexural yielding of the main beam. This system eliminates the need to comply with the rigorous limitation on the beam span-To-depth ratio that is proposed by seismic design codes to ensure the formation of plastic hinges at the two ends of the beam. Moreover, this... 

    Analytical study of three-dimensional flexural vibration of micro-rotating shafts with eccentricity utilizing the strain gradient theory

    , Article Meccanica ; Volume 51, Issue 6 , 2016 , Pages 1435-1444 ; 00256455 (ISSN) Hashemi, M ; Asghari, M ; Sharif University of Technology
    Springer Netherlands  2016
    Abstract
    In this work, some vibrational response parameters of strain gradient based micro-spinning Rayleigh beams with mass eccentricity distribution are investigated within infinitesimal deformation conditions. Governing equations of motion are derived utilizing the Hamilton’s principle. The gyroscopic effects and rotary inertia are both included in the formulation. By applying the Galerkin method, analytical expressions for natural frequencies of the micro beam in forward and backward whirl motions are obtained. In addition, an expression for the vibrational amplitude of the micro-beam due to mass eccentricity distribution is determined. Some numerical results are presented to study the effect of... 

    Displacement potentials for functionally graded piezoelectric solids

    , Article Applied Mathematical Modelling ; Volume 52 , 2017 , Pages 458-469 ; 0307904X (ISSN) Samea, P ; Eskandari, M ; Ahmadi, S. F ; Sharif University of Technology
    Abstract
    Two new displacement potential functions are introduced for the general solution of a three-dimensional piezoelasticity problem for functionally graded transversely isotropic piezoelectric solids. The material properties vary continuously along the axis of symmetry of the medium. The four coupled equilibrium equations in terms of displacements and electric potential are reduced to two decoupled sixth- and second-order linear partial differential equations for the potential functions. The obtained results are verified with two limiting cases: (i) a functionally graded transversely isotropic medium, and (ii) a homogeneous transversely isotropic piezoelectric solid. The simplified relations... 

    The modified dynamic-based pushover analysis of steel moment resisting frames

    , Article Structural Design of Tall and Special Buildings ; Volume 26, Issue 12 , 2017 ; 15417794 (ISSN) Mirjalili, M. R ; Rahimzadeh Rofooei, F ; Sharif University of Technology
    Abstract
    A modified dynamic-based pushover (MDP) analysis is proposed to properly consider the effects of higher modes and the nonlinear behavior of the structural systems. For this purpose, first, a dynamic-based story force distribution (DSFD) load pattern is constructed using a linear dynamic analysis, either time history (THA) or response spectrum (RSA). Performing an initial pushover analysis with the DSFD load pattern, a nonlinearity modification factor (NMF) is calculated to modify the DSFD load pattern. The envelope of the peak responses of the structure obtained from 2 pushover analyses with the modified DSFD load pattern as well as the code suggested first mode load pattern are considered... 

    Coupling microplane-based damage and continuum plasticity models for analysis of damage-induced anisotropy in plain concrete

    , Article International Journal of Plasticity ; Volume 95 , 2017 , Pages 216-250 ; 07496419 (ISSN) Daneshyar, A ; Ghaemian, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    A novel plastic-damage constitutive model for plain concrete is developed in this paper. For this purpose, the microplane theory is proposed for overcoming the deficiency of available anisotropic continuum plastic-damage models in reproducing the true anisotropic nature of damage in multidimensional loadings. Based on the microplane theory, the degeneration process in concrete is considered along with plastic deformations. Using the principle of strain energy equivalence, a transformation between the nominal and effective states of material is achieved, that results in a decoupled formulation for damage and plasticity. A yield function with multiple internal variables and a non-associative... 

    Seismic performance of reduced web section moment connections

    , Article International Journal of Steel Structures ; Volume 17, Issue 2 , 2017 , Pages 413-425 ; 15982351 (ISSN) Momenzadeh, S ; Kazemi, M. T ; Hoseinzade Asl, M ; Sharif University of Technology
    Korean Society of Steel Construction  2017
    Abstract
    Seismic behavior of beam-to-column connections can be improved by shifting the location of inelasticity away from the column’s face. Such connections can be achieved by reducing the flange area at a specific distance from the beam-column connection, called reduced beam section (RBS), or by reducing web area by introducing a perforation into the web, called reduced web section (RWS). This paper presents a parametric study that is carried out on the effect of the perforation size, perforation location, and the beam span length in the RWS connections, using finite element modeling. Next, an interaction formula is derived for design purposes, and a step by step design method is developed.... 

    Energy harvesting from structural vibrations of magnetic shape memory alloys

    , Article Applied Physics Letters ; Volume 110, Issue 10 , 2017 ; 00036951 (ISSN) Askari Farsangi, M. A ; Cottone, F ; Sayyaadi, H ; Zakerzadeh, M. R ; Orfei, F ; Gammaitoni, L ; Sharif University of Technology
    American Institute of Physics Inc  2017
    Abstract
    This letter presents the idea of scavenging energy from vibrating structures through magnetic shape memory alloy (MSMA). To this end, a MSMA specimen made of Ni50Mn28Ga22 is coupled to a cantilever beam through a step. Two permanent magnets installed at the top and bottom of the beam create a bias field perpendicular to the magnetization axis of the specimen. When vibrating the device, a longitudinal axial load applies on the MSMA, which in turn changes the magnetization, due to the martensitic variant reorientation mechanism. A pick-up coil wounded around the MSMA converts this variation into voltage according to the Faraday's law. Experimental test confirms the possibility of generating... 

    Nano cobalt ferrite catalyzed coupling reaction of nitroarene and alkyl halide: An odorless and ligand-free rout to unsymmetrical thioether synthesis

    , Article Catalysis Communications ; Volume 94 , 2017 , Pages 33-37 ; 15667367 (ISSN) Matloubi Moghaddam, F ; Pourkaveh, R ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    This study describes an odorless protocol for the synthesis of unsymmetrical sulfides via cobalt ferrite (CoFe2O4) catalyzed cross-coupling reaction of nitroarenes with alkyl halides in the presence of thiourea as sulfur source under ligand-free conditions. The catalyst was recycled using external magnetic field and reused for ten consecutive runs in the reaction of nitrobenzene, thiourea and benzyl bromide without significant loss of activity. Apart from being magnetically separable, being inexpensive and air-stable are another important features of this catalytic system. All the products were formed in good yields and short reaction times. © 2017 Elsevier B.V  

    Nano CoCuFe2O4-catalyzed coupling reaction of arylboronic acid with amines and thiols: An atom-economic and ligand-free route to access unsymmetrical amines and sulfides

    , Article Applied Organometallic Chemistry ; Volume 32, Issue 12 , 2018 ; 02682605 (ISSN) Matloubi Moghaddam, F ; Pourkaveh, R ; Gholamtajari, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    An efficient protocol was developed for the nano CoCuFe2O4-catalyzed C-N and C-S bond formation. By this catalytic system, both amine and sulfide-based structural motifs were formed efficiently in aryl halide-free route. The amination reaction of phenyl boronic acid with various types of amines was conducted under ligand-free conditions, in ethanol as a green solvent at 60°C. Unsymmetrical diaryl/aryl alkyl sulfide synthesis via the coupling reaction of arylboronic acids with thiols was also conducted. The nano cobalt-copper ferrite was used as a heterogenous efficient, inexpensive, magnetically separable and recyclable catalyst that can be used for several cycles. © 2018 John Wiley & Sons,... 

    Vibration characteristics of laminated composite beams with magnetorheological layer using layerwise theory

    , Article Mechanics of Advanced Materials and Structures ; Volume 25, Issue 3 , 2018 , Pages 202-211 ; 15376494 (ISSN) Naji, J ; Zabihollah, A ; Behzad, M ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    Vibration characteristics of laminated composite beams with magnetorheological (MR) layer are investigated using layerwise theory. In most studies, shear strain across the thickness of MR layer has been considered as a constant value, which does not precisely describe the shear strain. In this study, layerwise theory is employed to develop a finite element formulation to investigate MR-laminated beams. Experimental tests under different magnetic fields are carried out to verify the numerical results. Layerwise numerical results are compared with the experimental results and other theories. An empirical expression for complex shear modulus is presented. The effects of MR layer thickness on... 

    An analytical-numerical solution to assess the dynamic response of viscoelastic plates to a moving mass

    , Article Applied Mathematical Modelling ; Volume 54 , 2018 , Pages 670-696 ; 0307904X (ISSN) Foyouzat, M. A ; Esmaeilpour Estekanchi, H ; Mofid, M ; Sharif University of Technology
    Elsevier Inc  2018
    Abstract
    In this paper, the dynamics of a viscoelastic plate resting on a viscoelastic Winkler foundation and traversed by a moving mass is studied. The Laplace transform is employed to derive the governing equation of the problem. Thereafter, an analytical-numerical method is proposed in order to determine the dynamic response of the plate. The method is based on transforming the governing partial differential equation into a new solvable system of linear ordinary differential equations. To that extent, the proposed solution proves to be applicable to plates made of any viscoelastic material and with various boundary conditions. Moreover, the moving mass may travel at any arbitrary trajectory with... 

    Modal parameter identification of rotary systems based on power spectral density transmissibility functions

    , Article 2018 SAE World Congress Experience, WCX 2018, 10 April 2018 through 12 April 2018 ; Volume 2018-April , 2018 ; 01487191 (ISSN) Khodaygan, S ; Sharif University of Technology
    SAE International  2018
    Abstract
    Operational modal analysis based on power spectral density transmissibility functions (PSDT) is a powerful tool to identify the modal parameters with low sensitivity to excitations. The rotor systems may have the asymmetric damping or stiffness matrices which can lead to increase the difficulties of the identification procedure. In this paper, a new method is proposed to identify the modal parameters of the asymmetric rotary systems by the operational modal analysis based on the power spectral density transmissibility functions. For pole extraction from the PSDT function, a proper parametric identification method such as the Poly-reference Least Squares Complex Frequency-domain method... 

    Stress intensity factors of multiple axisymmetric interface cracks in an isotropic layer with FGM coating under torsional loading

    , Article Multidiscipline Modeling in Materials and Structures ; Volume 15, Issue 6 , 2019 , Pages 1352-1365 ; 15736105 (ISSN) Tavakoli, A ; Pourseifi, M ; Rezaei, S ; Sharif University of Technology
    Emerald Group Publishing Ltd  2019
    Abstract
    Purpose: The purpose of this paper is to provide a theoretical analysis of the fracture behavior of multiple axisymmetric interface cracks between a homogeneous isotropic layer and its functionally graded material (FGM) coating under torsional loading. Design/methodology/approach: In this paper, the authors employ the distributed dislocation technique to the stress analysis, an FGM coating-substrate system under torsional loading with multiple axisymmetric cracks consist of annular and penny-shaped cracks. First, with the aid of the Hankel transform, the stress fields in the homogeneous layer and its FGM coating are obtained. The problem is then reduced to a set of singular integral equations... 

    Analytical investigation of composite sandwich beams filled with shape memory polymer corrugated core

    , Article Meccanica ; Volume 54, Issue 10 , 2019 , Pages 1647-1661 ; 00256455 (ISSN) Akbari Azar, S ; Baghani, M ; Zakerzadeh, M. R ; Shahsavari, H ; Sohrabpour, S ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    Shape memory polymers (SMPs) are a class of smart materials which can recover their shape even after many shape changes in application of an external stimulus. In this paper, flexural behavior of a composite beam, constructed of a corrugated part filled with SMPs, is studied. This composite beam is applicable in sensor and actuator applications. Since the corrugated profiles display higher stiffness-to-mass ratio in the transverse to the corrugation direction, the beams with a corrugated part along the transverse direction are stiffer than ones with a corrugated part along the length. Employing a developed constitutive model for SMPs and the Euler–Bernoulli beam theory, the behavior of the... 

    A method for system identification in the presence of unknown harmonic excitations based on operational modal analysis

    , Article 2019 SAE Automotive Technical Papers, WONLYAUTO 2019, 1 January 2019 through 1 January 2019 ; Volume 2019-January, Issue January , 2019 ; 01487191 (ISSN) Khodaygan, S ; Sharif University of Technology
    SAE International  2019
    Abstract
    Operational modal analysis techniques classically have been developed based on the assumption that the input to the system is a stationary white noise. While, in many practical cases, the systems are excited by combination of white noise and colored noises (harmonic excitations). Consequently, in conditions where non-white noises are present, the existing OMA methods cannot completely distinguish between the system poles and the induced poles due to colored noises. In order to overcome this weakness of OMA methods, some researches have been conducted in the field. In this paper, a new method is proposed for identifying the modal parameters of the system under the unknown colored noises,... 

    Strength and stiffness estimation of damaged reinforced concrete shear walls using crack patterns

    , Article Structural Control and Health Monitoring ; Volume 27, Issue 4 , February , 2020 Madani, H. M ; Dolatshahi, K. M ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    The purpose of this paper is to estimate the stiffness and strength of damaged rectangular reinforced concrete shear walls after an earthquake using surface crack patterns. Assessing the damage severity of buildings after an earthquake is an important part of the emergency inspection operation of buildings. Expert inspectors tag buildings into two categories of safe or unsafe that are usually affected by subjective decisions, which may result in catastrophic events reported in previous earthquakes. In this research, an extensive database on the images of damaged rectangular reinforced concrete shear walls (RCSWs) is collected and used to develop predictive equations for updated stiffness and...