Loading...
Search for: bending-strength
0.005 seconds
Total 50 records

    Comparative study on the effect of fiber type and content on the fire resistance of alkali-activated slag composites

    , Article Construction and Building Materials ; Volume 288 , 2021 ; 09500618 (ISSN) Shoaei, P ; Ghassemi, P ; Ameri, F ; Musaeei, H. R ; Chee Ban, C ; Ozbakkaloglu, T ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Alkali-activated slag (AAS) binder has been recognized as a suitable material for construction applications owing to its low carbon footprint and good mechanical and durability performance. As a promising alternative to the conventional Portland cement binder, it is important to maximize the performance of AAS composites under normal and harsh environmental conditions such as exposure to fire. The use of fibers in a brittle matrix is a well-known approach to enhance the mechanical strength and cracking behavior under thermal loading. In this study, polypropylene fiber (PPF), glass fiber (GF), and basalt fiber (BF) are used at volume fractions of 0.5%, 1%, and 1.5% in AAS mortar mixes. First,... 

    The effect of pore morphology and agarose coating on mechanical properties of tricalcium phosphate scaffolds

    , Article International Journal of Applied Ceramic Technology ; Volume 19, Issue 5 , 2022 , Pages 2713-2722 ; 1546542X (ISSN) Gorgin Karaji, Z ; Bagheri, R ; Amirkhani, S ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Three-dimensional biocompatible porous structures can be fabricated using different methods. However, the biological and mechanical behaviors of scaffolds are the center of focus in bone tissue engineering. In this study, tricalcium phosphate scaffolds with similar porosity contents but different pore morphologies were fabricated using two different techniques, namely, the replica method and the pore-forming agent method. The samples fabricated using the pore-forming agent showed more than two times higher compressive and bending strengths and more than three times higher compressive moduli. Furthermore, a thin layer of agarose coating improved the compressive and bending strength of both... 

    An experimental investigation into the mechanical performance and microstructure of cementitious mortars containing recycled waste materials subjected to various environments

    , Article Journal of Building Engineering ; Volume 61 , 2022 ; 23527102 (ISSN) Mohseni pour asl, J ; Gholhaki, M ; Sharbatdar, M ; Pachideh, G ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This paper deals with an experimental investigation into the mechanical performance and microstructure characteristics of the cementitious mortars containing recycled waste materials subjected to acidic, neutral and alkaline environments. The recycled waste materials include glass, eggshell, iron and rubber powder in various amounts, namely 7, 14 and 21% by volume, as the replacement for ordinary Portland cement (OPC). In this respect, to examine the mechanical performance of the specimens, the compressive, tensile and bending strength tests as well as water absorption test were carried out at the ages of 7, 28 and 90 days. Moreover, to study the microstructure of the specimens, the scanning... 

    Evaluation of strong column-weak beam criterion in spliced columns of steel moment frames

    , Article Results in Engineering ; Volume 14 , 2022 ; 25901230 (ISSN) Shamszadeh, M. M ; Maleki, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In the seismic design of steel special moment frames, it is necessary to ensure that columns are generally stronger than beams. This reduces the probability of a weak story failure mechanism of the frame and ensures the formation of beams' plastic hinges earlier than the columns'. This criterion is known as strong column-weak beam (SCWB) in seismic design codes and is checked by a formula in the form of a ratio of total flexural strengths of columns to beams framing at each joint. It is common practice to ignore the column section change at the splice location and to use the flexural strength of the larger column section in evaluating this ratio. In this paper, several steel special moment... 

    Strength of SCLC recycled springs and fibers concrete subject to high temperatures

    , Article Structural Concrete ; Volume 23, Issue 1 , 2022 , Pages 285-299 ; 14644177 (ISSN) Pachideh, G ; Toufigh, V ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    In this article, the self-compacting lightweight concretes (SCLC) with different fibers were prepared and exposed to elevated temperatures, and their mechanical properties were investigated. Three types of fibers were steel fibers (SF), polypropylene fibers (PPF), and metal springs with a volume fraction of 0.4%. One hundred and fifty cylindrical specimens were prepared, and the compression, tensile and flexural tests were carried out on them after exposure to high temperatures ranging from 25 to 700°C. The findings indicate that incorporation of steel fibers and springs enhanced the compressive strength of concrete by 20% compared to the control specimen. Meanwhile, the polypropylene fibers... 

    Effect of compressive glass fiber-reinforced polymer bars on flexural performance of reinforced concrete beams

    , Article ACI Structural Journal ; Volume 119, Issue 6 , 2022 , Pages 5-18 ; 08893241 (ISSN) Hassanpour, S ; Khaloo, A ; Aliasghar Mamaghani, M ; Khaloo, H ; Sharif University of Technology
    American Concrete Institute  2022
    Abstract
    This research studies the effect of glass fiber-reinforced polymer (GFRP) bars as compressive reinforcement in reinforced concrete (RC) beam members. Three singly and six doubly reinforced GFRP-RC beams were tested under a four-point loading configuration. The effect of compressive reinforcement on the load-bearing capacity, ductility, stiffness, and failure mode is determined. Also, the compressive performance of GFRP bars is evaluated by testing GFRP-RC cylinders. According to the results, GFRP bars in compression had a limited contribution to enhancing flexural strength, and the maximum increment in the flexural capacity of doubly reinforced beams compared to singly reinforced specimens... 

    A new procedure for the fabrication of dissimilar joints through injection of colloidal nanoparticles during friction stir processing: Proof concept for AA6062/PMMA joints

    , Article Journal of Manufacturing Processes ; Volume 49 , 2020 , Pages 335-343 Aghajani Derazkola, H ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    We present a new semi-solid state procedure for efficient joining of dissimilar materials. The process called fed friction stir processing (FFSP) and works based on in-situ injection of colloidal nanoparticles in the welding line during processing. To present the efficiency of the process, friction stir welding of AA6062 aluminum alloy and poly(methyl methacrylate) (PMMA) through injection of alumina nanoparticles is presented. Microstructural features and mechanical characteristics of the weldments are elaborated. It is shown that in-situ feeding of the alumina nanoparticles during FFSP changes the thermo-mechanical regimes of the bonding zone and decreases the thickness of interaction... 

    Rubberized alkali-activated slag mortar reinforced with polypropylene fibres for application in lightweight thermal insulating materials

    , Article Construction and Building Materials ; 2020 Rajaei, S ; Shoaei, P ; Shariati, M ; Ameri, F ; Musaeei, H. R ; Behforouz, B ; de Brito, J ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Every year, about a thousand million tires reach the end of their service life, more than half of which are disposed of in landfills. The waste tire rubber has a great potential for application as aggregate phase in production of lightweight concrete/mortar. This study is aimed at evaluating the effects of using crumb rubber (CR) as fine aggregate at replacement ratios of 0–60% (by volume) in alkali-activated slag mortars. Furthermore, polypropylene fibre (PPF) was used at 0.5% and 1% of volume of the mix to enhance the properties of mortar mixes such as flexural strength and shrinkage behaviour. The compressive strength, flexural strength, water absorption, thermal conductivity, drying... 

    Response of a novel beam-to-column/brace-to-frame connection to monotonic and cyclic shear loading

    , Article Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 9 June 2008 through 13 June 2008, Berlin ; Volume 2 , 2008 , Pages 609-618 ; 9780791848197 (ISBN) Khonsari, V ; England, G. L ; Abazarsa, F ; Ocean, Offshore, and Arctic Engineering Division; ASME ; Sharif University of Technology
    2008
    Abstract
    A new universal structural joint was developed. While in bending it has a high rotational capacity, which can be accompanied by large bending stiffness and strength, in shear, it also has a very high shear deformation capacity, which can again be accompanied with large shear stiffness and strength. While the former characteristic makes it a good candidate for being used as a beam-to-column joint, the latter makes it highly applicable in connecting braces of a braced frame to the frame members. The experimental study carried out previously on this joint, concentrated on the performance of its steel specimens under 'monotonie' shear loading as well as that of its aluminium specimens under both... 

    Experimental investigation and finite element modelling of PMMA/carbon nanotube nanobiocomposites for bone cement applications

    , Article Soft Matter ; Volume 18, Issue 36 , 2022 , Pages 6800-6811 ; 1744683X (ISSN) Sadati, V ; Khakbiz, M ; Chagami, M ; Bagheri, R ; Chashmi, F. S ; Akbari, B ; Shakibania, S ; Lee, K. B ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Multi-walled carbon nanotubes (MWCNTs) are one of the preferred candidates for reinforcing polymeric nanobiocomposites, such as acrylic bone type of cement. In this study, at first, bulk samples of the reinforced polymethylmethacrylate (PMMA) matrix were prepared with 0.1, 0.25, and 0.5 wt per wt% of MWCNTs by the casting method. Tensile and three-point bending tests were performed to determine the essential mechanical properties of bone cement, such as tensile and bending strengths. The tensile fracture surfaces were investigated by scanning electron microscopy (SEM). The commercial software (Abaqus) was used to conduct finite element analysis (FEA) by constructing a representative volume...