Loading...
Search for: biodegradation
0.009 seconds
Total 216 records

    Biodegradation of cyanide by a new isolated strain under alkaline conditions and optimization by response surface methodology (RSM)

    , Article Journal of Environmental Health Science and Engineering ; Vol. 12, issue. 1 , 2014 Mirizadeh, S ; Yaghmaei, S ; Nejad, Z. G ; Sharif University of Technology
    Abstract
    Background: Biodegradation of free cyanide from industrial wastewaters has been proven as a viable and robust method for treatment of wastewaters containing cyanide. Results: Cyanide degrading bacteria were isolated from a wastewater treatment plant for coke-oven-gas condensate by enrichment culture technique. Five strains were able to use cyanide as the sole nitrogen source under alkaline conditions and among them; one strain (C2) was selected for further studies on the basis of the higher efficiency of cyanide degradation. The bacterium was able to tolerate free cyanide at concentrations of up to 500 ppm which makes it a good potentially candidate for the biological treatment of cyanide... 

    Biodegradation of phenol from a synthetic aqueous system using acclimatized activated sludge

    , Article Arabian Journal of Geosciences ; Volume 6, Issue 10 , 2013 , Pages 3847-3852 ; 18667511 (ISSN) Jalayeri, H ; Doulati Ardejani, F ; Marandi, R ; Rafiee pur, S ; Sharif University of Technology
    2013
    Abstract
    Phenol is one of the aromatic hydrocarbons. Phenol and its derivatives are highly toxic. These pollutants can be observed in the effluents of many industries. This research investigates the removal of phenol by the use of activated sludge in a batch system. The effects of influencing factors on biodegradation efficiency have been evaluated. The main factors considered in this study were the volume of acclimatized activated sludge inoculation, pH, temperature, and initial concentration of phenol. The inoculation volumes of 1, 3, and 5 mL of acclimatized activated sludge were taken into account. Different pH values of 3, 5, 7, 9, and 11 were examined. The experiments were conducted for... 

    Study on biodegradation of Mazut by newly isolated strain Enterobacter cloacae BBRC10061: Improving and kinetic investigation

    , Article Iranian Journal of Environmental Health Science and Engineering ; Volume 10, Issue 2 , 2013 ; 17351979 (ISSN) Khorasani, A. C ; Mashreghi, M ; Yaghmaei, S ; Sharif University of Technology
    2013
    Abstract
    Mazut as a source content of various hydrocarbons is hard to be degraded and its cracking could turn mazut into useful materials. Nevertheless degradation of mazut by routine methods is too expensive but application of indigenous microorganisms as biocatalysts could be effective and important to lower the costs and expand its consumption. Mazut biodegradation can be improved using various strategies; Therefore in this study newly isolated strain Enterobacter cloacae BBRC 10061 was used in a method of gradual addition of mazut into medium and its results were compared with simple addition method. To investigate degradation of mazut by BBRC 10061, influence of increase of mazut concentration... 

    Heterogeneous catalytic ozonation by Nano-MgO is better than sole ozonation for metronidazole degradation, toxicity reduction, and biodegradability improvement

    , Article Desalination and Water Treatment ; Volume 57, Issue 35 , 2016 , Pages 16435-16444 ; 19443994 (ISSN) Kermani, M ; Bahrami Asl, F ; Farzadkia, M ; Esrafili, A ; Salahshour Arian, S ; Khazaei, M ; Dadban Shahamat, Y ; Zeynalzadeh, D ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    Abstract: In the current paper, the removal efficiency of metronidazole (MNZ) using a catalytic ozonation process (COP) in the presence of magnesium oxide nanocrystals, as a catalyst, was investigated in deionized water and compared with a sole ozonation process (SOP). The influence of several operational factors on both removal processes was evaluated: solution pH, MgO dosage, initial MNZ concentration, and reaction time. Biodegradability improvement, mineralization rate, oxidation intermediates, and toxicity were also studied for the COP. The results showed that MgO nanocrystals accelerated MNZ removal compared to the SOP. The optimum pH for both SOP and COP was obtained at 10 and optimum... 

    Property Investigation of Poly (Ethylene Co-vinyl Acetate)/Poly (l-Lactic Acid)/Organo Clay Nanocomposites

    , Article Journal of Polymers and the Environment ; Volume 27, Issue 12 , 2019 , Pages 2886-2894 ; 15662543 (ISSN) Torabi, H ; Ramazani SaadatAbadi, A ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    In this study, EVAc/PLA/organo clay nanocomposites were prepared via solution mixing method. The SEM images were used to investigate the morphology of nanocomposites revealing no phase separation or agglomeration of disperse phase in EVAc/PLA blends and nanocomposites. SAXS spectra confirmed the intercalated morphology of nanocomposites. Soil burial test were carried out and the rate of degradation of the samples were measured indirectly. Oxygen gas permeability of EVAc was slightly decreased by adding PLA to the matrix, when small loads of clay caused dramatic improvement in barrier properties. Melt rheological frequency sweep test illustrated the compatibility of EVAc with low contents of... 

    Biodegradation of 4-chlorobenzoic acid by lysinibacillus macrolides DSM54T and determination of optimal conditions

    , Article International Journal of Environmental Research ; Volume 14, Issue 2 , 2020 , Pages 145-154 Samadi, A ; Sharifi, H ; Ghobadi Nejad, Z ; Hasan Zadeh, A ; Yaghmaei, S ; Sharif University of Technology
    Springer  2020
    Abstract
    Chlorobenzoic acids (CBAs) are recalcitrant and toxic materials which enter the environment directly using pesticides and herbicides, or indirectly through the biodegradation of polychlorinated biphenyl (PCB) compounds. In the conducted study, biodegradation of 4-chlrobenzoic acid was investigated by Lysinibacillus macrolides DSM54T, which had previously been isolated from PCB-polluted soils. Environmental factors including pH, temperature, 4-CBA concentration and inoculation percentage were optimized using response surface methodology (RSM). 58 experiments were designed according to Historical Data, because of the arbitrary selection of experiments, and the combined effects of the... 

    Synthesis and properties of biodegradable hydrogels of κ-carrageenan grafted acrylic acid-co-2-acrylamido-2-methylpropanesulfonic acid as candidates for drug delivery systems

    , Article Reactive and Functional Polymers ; Volume 67, Issue 7 , 2007 , Pages 644-654 ; 13815148 (ISSN) Pourjavadi, A ; Barzegar, Sh ; Zeidabadi, F ; Sharif University of Technology
    2007
    Abstract
    Novel types of highly swelling hydrogels were prepared by grafting crosslinked polyacrylic acid-co-poly-2-acrylamido-2-methylpropanesulfonic acid (PAA-co-PAMPS) chains onto κ-carrageenan through a free radical polymerization method. Here, we propose a mechanism for κ-carrageenan-g-PAA-co-PAMPS formation and confirm the hydrogel structure using FTIR spectroscopy. The effect of grafting variables (i.e. concentration of methylenebisacrylamide (MBA), acrylic acid/-2-acrylamido-2-methylpropanesulfonic acid (AA/AMPS) weight ratio, ammonium persulfate (APS), κ-carrageenan, neutralization percent and reaction temperature) were systematically optimized to achieve a hydrogel with a maximum swelling... 

    Fate of intermediate biodegradation products of triethyl amine in a compost-based biofiltration system

    , Article International Journal of Environmental Research ; Volume 1, Issue 2 , 2007 , Pages 163-169 ; 17356865 (ISSN) Torkian, A ; Keshavarzi Shirazi, H ; Mehrdadi, N ; Sharif University of Technology
    2007
    Abstract
    Biofiltration of Triethylamine (TEA) vapor used as a catalyst in casting operations was evaluated in this study The unit consisted of a 6-L three-stage biofilter containing a mixture of compost and wood chips (40:60 v/v) as the filter medium. Seed microbial population from municipal activated sludge was acclimated for a period of three weeks prior to the actual experimental runs. In the startup period, high pH values up to 10 was observed due to alkaline nature of TEA and inadequate formation of biofilm and low overall biodegradation. Steady increase of organic-N concentration along with gradual upward trend of pressure drop indicated sound establishment of microbial population. Operational... 

    An overview on eco-friendly polymer composites for heavy metal ion remediation

    , Article Current Analytical Chemistry ; Volume 17, Issue 6 , 2021 , Pages 737-753 ; 15734110 (ISSN) Nazir, M. S ; Palvasha, B. A ; Tahir, Z ; Ul Hassan, S ; Ali, Z ; Akhtar, M. N ; Azam, K ; Abdullah, M. O ; Sharif University of Technology
    Bentham Science Publishers  2021
    Abstract
    Background: Water contamination by noxious heavy metals due to urbanization is a global environmental problem. Heavy metal ions pollution makes the water unsuitable for drinking and is also highly toxic to human beings and eco-system. The remediation of heavy metals is therefore very crucial. Methods: Adsorbents based on biopolymer and eco-friendly polymer composites have been developed and fabricated to remediate and remove heavy metals from the ecosystem. Results: In recent years biocomposites have been successful as cost-effective adsorbents for the remediation of various contaminants with their eco-friendly nature and sustainability. Conclusion: This review article gives an overview on... 

    The treatment of phenolic wastewater using a moving bed biofilm reactor

    , Article Process Biochemistry ; Volume 39, Issue 10 , 2004 , Pages 1177-1181 ; 00329592 (ISSN) Borghei, S. M ; Hosseini, S. H ; Sharif University of Technology
    2004
    Abstract
    Experiments were conducted to investigate the behaviour of moving bed biofilm reactor (MBBR) receiving a mixture of toxic (phenolic) wastewater. The study was carried out on laboratory scale using two MBBR reactors fed with synthetic wastewater. The wastewater was prepared by mixing a solution of molasses with a known amount of phenol and nutrients. Two MBBR units were operated simultaneously at different hydraulic retention times (HRT) of 24, 20, 16, 12 and 8 h while phenol concentration was in the range of 200, 400, 620 and 800 mg/l. Throughout the experiments the ratio of phenolic chemical oxygen demand (COD) concentration to total COD was changed from a ratio of 0.2 to a ratio of 1. The... 

    Determination of the pesticide naptalam and its degradation products by positive and negative ion mass spectrometry

    , Article Fresenius' Journal of Analytical Chemistry ; Volume 369, Issue 2 , 2001 , Pages 176-183 ; 09370633 (ISSN) Ghassempour, A ; Arshadi, M. R ; Asghari, F. S ; Sharif University of Technology
    2001
    Abstract
    N-1-naphthylphtalamic acid (naptalam) and its degradation products, 1-naphthylamine and N-(1-naphthyl) phthalimide were simultaneously determined in river water by two independent mass spectrometric (MS) methods. These were negative ion MS (NIMS) and programmable temperature vaporizer gas chromatography mass spectrometry (PTV-GC MS) with electron impact ionization (positive ions). Prior to the NIMS analysis, the samples were preconcentrated by solid phase extraction (SPE) of C18 membrane discs. The PTV-GC MS studies were performed without any preconcentration procedure. Selected ion monitoring (SIM) and internal standardization with naphthalene were applied in both methods. The limits of... 

    Preparation of Suitable Foam for Bioremediation of Oil

    , M.Sc. Thesis Sharif University of Technology Hajipoor Esfeden, Hajar (Author) ; Roosta Azad, Reza (Supervisor) ; Moosavi, Abbas (Supervisor) ; Hesampour, Mehrdad (Co-Advisor)
    Abstract
    When oil spill take place, it should be removed rapidly. For control of oil pollution, polymeric foams that absorb oil highly, can be used. These foams are polyurethane and polypropylene that float on water and absorb several times their own weight of crude oil. When a thin layer of crude oil remained on water, it couldn’t be separated by chemical and physical methods. In this cases biological methods will be best and suitable. Therefore absorption and biodegradation of oil spill are executed by immobilization of suitable microorganism on polyurethane foam. But current polyurethane foams aren’t biodegradable so this incompetence should be solved. Polyurethane foams compose of two basic... 

    Investigating the Microstructure, Mechanical Properties and Corrosion Resistance of Biodegradable Mg-Li-Zn Alloys

    , M.Sc. Thesis Sharif University of Technology Zohrevand, Mohammad (Author) ; Alizadeh, Reza (Supervisor) ; Tavakoli, Rouhollah (Co-Supervisor)
    Abstract
    Due to its biodegradability, magnesium can be a good option for making degradable medical implants that disappear in the body over time and thus there would be no need for secondary surgery. However, high rate of corrosion of magnesium in the body environment and low formability at room temperature are the two main problems of magnesium, which lead to rapid destruction of the sample in a short time and serious problems. For these reasons, much research is currently being done to improve the corrosion behavior and mechanical properties of magnesium alloys through microstructure modification. In this regard, special attention has been paid to Mg-Li alloys as the lightest magnesium alloys. The... 

    Oxygen-barrier properties of poly(lactic acid)/poly(vinyl acetate-co-vinyl alcohol) blends as biodegradable films

    , Article Journal of Applied Polymer Science ; Volume 125, Issue SUPPL. 2 , September , 2012 , Pages E20-E26 ; 00218995 (ISSN) Razavi, S. M ; Dadbin, S ; Frounchi, M ; Sharif University of Technology
    Wiley  2012
    Abstract
    The oxygen-barrier properties of poly(lactic acid) (PLA)/poly(vinyl acetate-co-vinyl alcohol) [P(VAc-co-VA)] were investigated. P(VAc-co-VA)s with vinyl alcohol (VA) contents of 5, 10, and 15 mol % were prepared with the acid-catalyzed hydrolysis of poly(vinyl acetate). The obtained copolymers with various contents of VA were blended with PLA at 5/95, 10/90, and 15/85 compositions. Films of the blends were prepared by a solution-casting method with chloroform as the cosolvent. Although the blend with 5% VA in the copolymer appeared to be miscible, the blends with 10 and 15% VA content in the copolymer were immiscible, as verified by dynamic mechanical analysis. The oxygen-barrier properties... 

    Preparation of biodegradable gelatin/PVA porous scaffolds for skin regeneration

    , Article Artificial Cells, Nanomedicine and Biotechnology ; 2016 , Pages 1-8 ; 21691401 (ISSN) Mahnama, H ; Dadbin, S ; Frounchi, M ; Rajabi, S ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    Porous scaffolds composed of gelatin/poly (vinyl alcohol), (Gel/PVA), were prepared using combination of freeze gelation and freeze drying methods. The effect of polymer concentration, gelatin/PVA ratio, and glutaraldehyde/gelatin ratio (GA/Gel) was investigated on morphology of pores, swelling ratio, biodegradation, and skin cell culture. At optimum preparation conditions the scaffolds had uniform pore size distributions showing high swelling ratio of 23.6. The scaffolds were of biodegradable nature and almost degraded in 28 days. Human dermal fibroblast cells (HDF) were cultured on the scaffolds and MTS assay was conducted to evaluate the influence of PVA on growth and proliferation of the... 

    Preparation and characterization of poly-lactic acid based films containing propolis ethanolic extract to be used in dry meat sausage packaging

    , Article Journal of Food Science and Technology ; Volume 57, Issue 4 , 2020 , Pages 1242-1250 Safaei, M ; Roosta Azad, R ; Sharif University of Technology
    Springer  2020
    Abstract
    In this study, active poly lactic acid (PLA) films containing 0, 10, 20 and 40% w/w propolis extract (PE), as active agent, were developed. A high amount of phenolic content (PC) was measured in PE. The antioxidant effect of active PLA films was determined by measuring the PC of sausage slices after 0, 2 and 4 days storage at refrigerator. Results showed that phenolic compounds of PE were released from PLA films in quantities proportional to PE concentration. Disc diffusion test indicated that PE showed an inhibitory effect against Staphylococcus aureus and Pseudomonas aeruginosa bacterial species but was more effective against gram-positive species. PE containing PLA films had antimicrobial... 

    The identification and performance assessment of dominant bacterial species during linear alkylbenzene sulfonate (LAS)-biodegradation in a bioelectrochemical system

    , Article Bioprocess and Biosystems Engineering ; Volume 44, Issue 12 , 2021 , Pages 2579-2590 ; 16157591 (ISSN) Askari, A ; Vahabzadeh, F ; Mardanpour, M. M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    The anionic surfactant linear alkylbenzene sulfonate (LAS) is a major chemical constituent of detergent formulation. Regarding the recalcitrant nature of sulfonoaromatic compounds, discharging these substances into wastewater collection systems is a real environmental issue. A study on LAS biodegradation based on bioelectrochemical treatment and in the form of developing a single-chamber microbial fuel cell with air cathode is reported in the present work. Pretreatment study showed LAS concentration of 60 ppm resulted in the highest anaerobic LAS removal of 57%; so, this concentration was chosen to run the MFC. After the sustained anodic biofilm was formed, LAS degradation rate during 4 days... 

    Empirical Study for Removal of Oil Contamination by Thermophilic Bacteria

    , M.Sc. Thesis Sharif University of Technology Babaeivelni, Kamel (Author) ; Vossoughi, Manuchehr (Supervisor) ; Alemzade, Iran (Supervisor)
    Abstract
    Biodegradation has always been as a proper method for treatment of oil contamination. Accordingly, several investigations have been done by mesophilic bacteria for biodegradation of hydrocarbons while few studies have been conducted about thermophilic bacteria.
    There are many factors like high growth rate of thermophilic bacteria and good resistance of enzymes secreted from thermophiles against physical and chemical variations lead to the extensive use of thermophilic bacteria for removal of oil contamination. The important factors should be optimized in order to choose a suitable method for the removal of oil contaminations. Optimal conditions for oil contamination removal by... 

    Study on Effects of Short Wood Fibers on Physical and Mechanical Properties of Biodegradable Composite Based on Thermoplastic Starch

    , M.Sc. Thesis Sharif University of Technology Pesaran Haji Abbas, Ehsan (Author) ; Bagheri, Reza (Supervisor) ; Sayyed Reihani, Morteza (Supervisor)
    Abstract
    Due to the negative effects of conventional plastics on the enviroment, especially in the packaging sector, extensive efforts have been put to replace these polymers with biodegradable polymers. Starch is one of the biodegradable polymers which has attracted a lot of attentions because of low cost and good processability. Native starch has the form of granule and can be processed to a continuous phase after gelatinization in the presence of a plasticizer. The resulting material is a biodegradable plastic-like material called thermoplastic starch (TPS) which is processed using conventional technologies, but suffers from low mechanical properties and high hydrophilicity. Addition of natural... 

    Investigating Asphaltene Biodegradability by Microorganism Considering Oil-Water Interface

    , M.Sc. Thesis Sharif University of Technology Iraji, Shohre (Author) ; Ayatollahi, Shahab (Supervisor) ; Taghikhani, Vahid (Supervisor)
    Abstract
    Asphaltine particle precipitation may lead to serious problems in petroleum industry; including wellbore transmissibility reduction. One of the proposed remedial methods is to make a use of the microorganisms which are able to consume the heavy hydrocarbon chains.
    Hydrophobicity of a cell surface is one of the parameters which greatly affect the microorganism adhesion to water insoluble hydrocarbons, in which results a higher hydrocarbon biodegradation. Consequently as the hydrophobicity of a cell surface increases; the microorganism tendency to bond with the hydrocarbon molecule enhances. The presence of a surface active agent, as an instance a chemical surfactant, will affect the...