Loading...
Search for: biomechanical-phenomena
0.006 seconds

    Novel force–displacement control passive finite element models of the spine to simulate intact and pathological conditions; comparisons with traditional passive and detailed musculoskeletal models

    , Article Journal of Biomechanics ; Volume 141 , 2022 ; 00219290 (ISSN) Abbasi-Ghiri, A ; Ebrahimkhani, M ; Arjmand, N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Passive finite element (FE) models of the spine are commonly used to simulate intact and various pre- and postoperative pathological conditions. Being devoid of muscles, these traditional models are driven by simplistic loading scenarios, e.g., a constant moment and compressive follower load (FL) that do not properly mimic the complex in vivo loading condition under muscle exertions. We aim to develop novel passive FE models that are driven by more realistic yet simple loading scenarios, i.e., in vivo vertebral rotations and pathological-condition dependent FLs (estimated based on detailed musculoskeletal finite element (MS-FE) models). In these novel force–displacement control FE models,... 

    Objective measurement of inferior-directed stiffness in glenohumeral joint using a specially designed robotic device in healthy shoulders; within- and between-session reliability

    , Article Journal of Biomechanics ; Volume 127 , 2021 ; 00219290 (ISSN) Azarsa, M. H ; Mirbagheri, A. R ; Hosseini, R ; Shadmehr, A ; Karimi, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Clinical assessment of capsuloligamentous structures of the glenohumeral joint has been qualitative and subjective in nature, as demonstrated by limited intra- and inter-rater reliability. Robotic devices were utilized to develop a clinically objective measurement technique for glenohumeral joint stiffness. The purpose of this study was to quantify the amount of inferior-direction stiffness of the glenohumeral joint using a safe clinical device in the asymptomatic individuals, and to determine between trial and between session reliability of the robotic device. Twenty healthy subjects were recruited via convenience sampling. Inferior-directed translation and applying force were measured... 

    Phenomenological tissue fracture modeling for an Endoscopic Sinus and Skull Base Surgery training system based on experimental data

    , Article Medical Engineering and Physics ; Volume 68 , 2019 , Pages 85-93 ; 13504533 (ISSN) Sadeghnejad, S ; Farahmand, F ; Vossoughi, G ; Moradi, H ; Mousa Sadr Hosseini, S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The ideal simulator for Endoscopic Sinus and Skull Base Surgery (ESSS)training must be supported by a physical model and provide repetitive behavior in a controlled environment. Development of realistic tissue models is a key part of ESSS virtual reality (VR)-based surgical simulation. Considerable research has been conducted to address haptic or force feedback and propose a phenomenological tissue fracture model for sino-nasal tissue during surgical tool indentation. Mechanical properties of specific sino-nasal regions of the sheep head have been studied in various indentation and relaxation experiments. Tool insertion at different indentation rates into coronal orbital floor (COF)tissue is... 

    Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells

    , Article Physical Biology ; Volume 10, Issue 4 , 2013 ; 14783967 (ISSN) Mas, J ; Richardson, A. C ; Reihani, S. N. S ; Oddershede, L. B ; Berg Sorensen, K ; Sharif University of Technology
    2013
    Abstract
    With the success of in vitro single-molecule force measurements obtained in recent years, the next step is to perform quantitative force measurements inside a living cell. Optical traps have proven excellent tools for manipulation, also in vivo, where they can be essentially non-invasive under correct wavelength and exposure conditions. It is a pre-requisite for in vivo quantitative force measurements that a precise and reliable force calibration of the tweezers is performed. There are well-established calibration protocols in purely viscous environments; however, as the cellular cytoplasm is viscoelastic, it would be incorrect to use a calibration procedure relying on a viscous environment.... 

    Rehabilitation after ACL injury: A fluoroscopic study on the effects of type of exercise on the knee sagittal plane arthrokinematics

    , Article BioMed Research International ; Volume 2013 , July , 2013 ; 23146133 (ISSN) Norouzi, S ; Esfandiarpour, F ; Shakourirad, A ; Salehi, R ; Akbar, M ; Farahmand, F ; Sharif University of Technology
    2013
    Abstract
    A safe rehabilitation exercise for anterior cruciate ligament (ACL) injuries needs to be compatible with the normal knee arthrokinematics to avoid abnormal loading on the joint structures. The objective of this study was to measure the amount of the anterior tibial translation (ATT) of the ACL-deficient knees during selective open and closed kinetic chain exercises. The intact and injured knees of fourteen male subjects with unilateral ACL injury were imaged using uniplanar fluoroscopy, while the subjects performed forward lunge and unloaded/loaded open kinetic knee extension exercises. The ATTs were measured from fluoroscopic images, as the distance between the tibial and femoral reference... 

    Relative performances of artificial neural network and regression mapping tools in evaluation of spinal loads and muscle forces during static lifting

    , Article Journal of Biomechanics ; Volume 46, Issue 8 , 2013 , Pages 1454-1462 ; 00219290 (ISSN) Arjmand, N ; Ekrami, O ; Shirazi Adl, A ; Plamondon, A ; Parnianpour, M ; Sharif University of Technology
    2013
    Abstract
    Two artificial neural networks (ANNs) are constructed, trained, and tested to map inputs of a complex trunk finite element (FE) model to its outputs for spinal loads and muscle forces. Five input variables (thorax flexion angle, load magnitude, its anterior and lateral positions, load handling technique, i.e., one- or two-handed static lifting) and four model outputs (L4-L5 and L5-S1 disc compression and anterior-posterior shear forces) for spinal loads and 76 model outputs (forces in individual trunk muscles) are considered. Moreover, full quadratic regression equations mapping input-outputs of the model developed here for muscle forces and previously for spine loads are used to compare the... 

    Rigid-bar loading on pregnant uterus and development of pregnant abdominal response corridor based on finite element biomechanical model

    , Article International Journal for Numerical Methods in Biomedical Engineering ; Volume 36, Issue 1 , January , 2020 Irannejad Parizi, M ; Ahmadian, M. T ; Mohammadi, H ; Sharif University of Technology
    Wiley-Blackwell  2020
    Abstract
    During pregnancy, traumas can threaten maternal and fetal health. Various trauma effects on a pregnant uterus are little investigated. In the present study, a finite element model of a uterus along with a fetus, placenta, amniotic fluid, and two most effective ligament sets is developed. This model allows numerical evaluation of various loading on a pregnant uterus. The model geometry is developed based on CT-scan data and validated using anthropometric data. Applying Ogden hyper-elastic theory, material properties of uterine wall and placenta are developed. After simulating the “rigid-bar” abdominal loading, the impact force and abdominal penetration are investigated. Findings are compared... 

    Role and significance of trunk and upper extremity muscles in walker-assisted paraplegic gait: a case study

    , Article Topics in Spinal Cord Injury Rehabilitation ; Volume 24, Issue 1 , 2018 , Pages 18-27 ; 10820744 (ISSN) Baniasad, M ; Farahmand, F ; Arazpour, M ; Zohoor, H ; Sharif University of Technology
    Thomas Land Publishers Inc  2018
    Abstract
    Background and Purpose: Understanding the role and significance of trunk and upper extremity muscles in paraplegic gait can help in designing more effective assistive devices for these patients and also provides valuable information for improving muscle strengthening programs. Methods: In a patient with a spinal cord injury (SCI) who could walk independently (rating scale of ambulatory capacity, 9) with the aid of bilateral ankle-foot orthosis and a walker, the kinematics, kinetics and electromyographic (EMG) activities of 16 muscles from the trunk and upper and lower extremities were recorded during gait. The onset, cessation, and duration of the EMG signal were associated with the 4 phases... 

    Spinal segment ranges of motion, movement coordination, and three-dimensional kinematics during occupational activities in normal-weight and obese individuals

    , Article Journal of Biomechanics ; Volume 123 , 2021 ; 00219290 (ISSN) Ghasemi, M ; Arjmand, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Measurements of spinal segment ranges of motion (RoMs), movement coordination, and three-dimensional kinematics during occupational activities have implications in occupational/clinical biomechanics. Due to the large amount of adipose tissues, obese individuals may have different RoMs, lumbopelvic coordination, and kinematics than normal-weight ones. We aimed to measure/compare trunk, lumbar, and pelvis primary RoMs in all anatomical planes/directions, lumbopelvic ratios (lumbar to pelvis rotations at different trunk angles) in all anatomical planes/directions and three-dimensional spine kinematics during twelve symmetric/asymmetric statics load-handling activities in healthy normal-weight... 

    Subject-specific 2D/3D image registration and kinematics-driven musculoskeletal model of the spine

    , Article Journal of Biomechanics ; Volume 57 , 2017 , Pages 18-26 ; 00219290 (ISSN) Eskandari, A. H ; Arjmand, N ; Shirazi Adl, A ; Farahmand, F ; Sharif University of Technology
    Abstract
    An essential input to the musculoskeletal (MS) trunk models that estimate muscle and spine forces is kinematics of the thorax, pelvis, and lumbar vertebrae. While thorax and pelvis kinematics are usually measured via skin motion capture devices (with inherent errors on the proper identification of the underlying bony landmarks and the relative skin-sensor-bone movements), those of the intervening lumbar vertebrae are commonly approximated at fixed proportions based on the thorax-pelvis kinematics. This study proposes an image-based kinematics measurement approach to drive subject-specific (musculature, geometry, mass, and center of masses) MS models. Kinematics of the thorax, pelvis, and... 

    Subject-specific loads on the lumbar spine in detailed finite element models scaled geometrically and kinematic-driven by radiography images

    , Article International Journal for Numerical Methods in Biomedical Engineering ; Volume 35, Issue 4 , 2019 ; 20407939 (ISSN) Dehghan Hamani, I ; Arjmand, N ; Shirazi Adl, A ; Sharif University of Technology
    Wiley-Blackwell  2019
    Abstract
    Traditional load-control musculoskeletal and finite element (FE) models of the spine fail to accurately predict in vivo intervertebral joint loads due mainly to the simplifications and assumptions when estimating redundant trunk muscle forces. An alternative powerful protocol that bypasses the calculation of muscle forces is to drive the detailed FE models by image-based in vivo displacements. Development of subject-specific models, however, both involves the risk of extensive radiation exposures while imaging in supine and upright postures and is time consuming in terms of the reconstruction of the vertebrae, discs, ligaments, and facets geometries. This study therefore aimed to introduce a... 

    Symmetric and asymmetric bimanual coordination and freezing of gait in Parkinsonian patients in drug phases

    , Article Annals of the New York Academy of Sciences ; Volume 1511, Issue 1 , 2022 , Pages 244-261 ; 00778923 (ISSN) Fathipour Azar, Z ; Azad, A ; Akbarfahimi, M ; Behzadipour, S ; Taghizadeh, G ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Freezing of gait (FOG) is a debilitating symptom in patients with Parkinson's disease (PD), which may be associated with motor control impairments in tasks other than gait. This study aimed to examine whether symmetric and asymmetric bimanual coordination is impaired in PD with FOG (PD +FOG) patients and whether dual-task and drug phases may affect bimanual coordination in these patients. Twenty PD +FOG patients, 20 PD patients without FOG (PD –FOG) performed symmetric and asymmetric functional bimanual tasks (reach to and pick up a box and open a drawer to press a pushbutton inside it, respectively) under single-task and dual-task conditions. PD patients were evaluated during on- and... 

    The association between motor modules and movement primitives of gait: A muscle and kinematic synergy study

    , Article Journal of Biomechanics ; Volume 134 , 2022 ; 00219290 (ISSN) Esmaeili, S ; Karami, H ; Baniasad, M ; Shojaeefard, M ; Farahmand, F ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In spite of the extensive literature on the analysis of the muscle synergies during gait, the functionality of these synergies has not been studied in detail. This study explored the relationship between the motor modules and the kinematic maneuvers involved in human walking. Motion and surface electromyography data (of 28 trunk and lower extremity muscles) were acquired from ten healthy subjects during ten trials of self-selected speed gait each. The joint angle trajectories were half-wave rectified and divided into two independent positive directional degrees-of-freedom. The muscle and kinematic synergies were both extracted using the non-negative matrix factorization (NNMF) technique and... 

    The effect of functional bracing on the arthrokinematics of anterior cruciate ligament injured knees during lunge exercise

    , Article Gait and Posture ; Volume 63 , 2018 , Pages 52-57 ; 09666362 (ISSN) Jalali, M ; Farahmand, F ; Esfandiarpour, F ; Golestanha, S. A ; Akbar, M ; Eskandari, A ; Mousavi, S. E ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Background: Functional knee braces are extensively used for partially and completely torn anterior cruciate ligament (ACL) patients and those who have undergone ACL graft reconstruction, in order to support the healing ACL, improve the joint's functional stability, and restore the normal joint kinematics. Research question: Does wearing braces alter the arthrokinematics of the ACL deficient knees during lung exercise? Methods: For ten male unilateral ACL deficient subjects, 3D knee models were reconstructed from CT images, acquired in rest position. Sagittal plane fluoroscopy was then performed throughout a complete cycle of lunge in braced and non-braced conditions. The 3D kinematics of the... 

    The effects of movement speed on kinematic variability and dynamic stability of the trunk in healthy individuals and low back pain patients

    , Article Clinical Biomechanics ; Volume 30, Issue 7 , Aug , 2015 , Pages 682-688 ; 02680033 (ISSN) Asgari, M ; Sanjari, M. A ; Mokhtarinia, H. R ; Moeini Sedeh, S ; Khalaf, K ; Parnianpour, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Background: Comparison of the kinematic variability and dynamic stability of the trunk between healthy and low back pain patient groups can contribute to gaining valuable information about the movement patterns and neuromotor strategies involved in various movement tasks. Methods: Fourteen chronic low back pain patients with mild symptoms and twelve healthy male volunteers performed repeated trunk flexion-extension movements in the sagittal plane at three different speeds: 20 cycles/min, self-selected, and 40 cycles/min. Mean standard deviations, coefficient of variation and variance ratio as variability measures; maximum finite-time Lyapunov exponents and maximum Floquet multipliers as... 

    The influence of new reciprocating link medial linkage orthosis on walking and independence in a spinal cord injury patient

    , Article Spinal Cord ; Volume 53 , October , 2015 , Pages S10-S12 ; 13624393 (ISSN) Ahmadi Bani, M ; Arazpour, M ; Farahmand, F ; Azmand, A ; Hutchins, S. W ; Vahab Kashani, R ; Mousavi, M. E ; Sharif University of Technology
    Nature Publishing Group  2015
    Abstract
    Objectives: The purpose of this paper is to describe the development and evaluation of a new medial linkage reciprocating gait orthosis (MLRGO) that incorporates a reciprocal mechanism and is sensitive to pelvic motion to potentially assist paraplegic patients to walk and provide functional independence. Case description and methods: The new orthosis was constructed and tested by a 20-year-old female paraplegic subject with transverse myelitis at T10 level, who was 4 years post injury and had also been an isocentric reciprocating gait orthosis (IRGO) user for 2 years. She received gait training for 12 weeks before undertaking gait analysis, and also completed a questionnaire that was... 

    Tissue growth into three-dimensional composite scaffolds with controlled micro-features and nanotopographical surfaces

    , Article Journal of Biomedical Materials Research - Part A ; Volume 101, Issue 10 , 2013 , Pages 2796-2807 ; 15493296 (ISSN) Tamjid, E ; Simchi, A ; Dunlop, J. W. C ; Fratzl, P ; Bagheri, R ; Vossoughi, M ; Sharif University of Technology
    2013
    Abstract
    Controlling topographic features at all length scales is of great importance for the interaction of cells with tissue regenerative materials. We utilized an indirect three-dimensional printing method to fabricate polymeric scaffolds with pre-defined and controlled external and internal architecture that had an interconnected structure with macro- (400-500 μm) and micro- (∼25 μm) porosity. Polycaprolactone (PCL) was used as model system to study the kinetics of tissue growth within porous scaffolds. The surface of the scaffolds was decorated with TiO2 and bioactive glass (BG) nanoparticles to the better match to nanoarchitecture of extracellular matrix (ECM). Micrometric BG particles were... 

    Trajectory of human movement during sit to stand: A new modeling approach based on movement decomposition and multi-phase cost function

    , Article Experimental Brain Research ; Volume 229, Issue 2 , 2013 , Pages 221-234 ; 00144819 (ISSN) Sadeghi, M ; Andani, M. E ; Bahrami, F ; Parnianpour, M ; Sharif University of Technology
    2013
    Abstract
    The purpose of this work is to develop a computational model to describe the task of sit to stand (STS). STS is an important movement skill which is frequently performed in human daily activities, but has rarely been studied from the perspective of optimization principles. In this study, we compared the recorded trajectories of STS with the trajectories generated by several conventional optimization-based models (i.e., minimum torque, minimum torque change and kinetic energy cost models) and also with the trajectories produced by a novel multi-phase cost model (MPCM). In the MPCM, we suggested that any complex task, such as STS, is decomposable into successive motion phases, so that each... 

    Trunk, pelvis, and knee kinematics during running in females with and without patellofemoral pain

    , Article Gait and Posture ; Volume 89 , 2021 , Pages 80-85 ; 09666362 (ISSN) Haghighat, F ; Ebrahimi, S ; Rezaie, M ; Shafiee, E ; Shokouhyan, S. M ; Motealleh, A ; Parnianpour, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Background: Females are two times more likely to develop patellofemoral pain (PFP) than males. Abnormal trunk and pelvis kinematics are thought to contribute to the pathomechanics of this condition. However, there is a scarcity of evidence investigating proximal segments kinematics in females with PFP. Research question: The purpose of this study was to investigate whether females with PFP demonstrate altered trunk, pelvis, and knee joint kinematics compared with healthy controls during running. Methods: Thirty-four females (17 PFP, 17 controls) underwent a 3-dimensional motion analysis during treadmill running at preferred and fixed speeds, each trial for 30 s. Variables of interest... 

    Trunk coordination in healthy and chronic nonspecific low back pain subjects during repetitive flexion-extension tasks: Effects of movement asymmetry, velocity and load

    , Article Human Movement Science ; Volume 45 , 2016 , Pages 182-192 ; 01679457 (ISSN) Mokhtarinia, H. R ; Sanjari, M. A ; Chehrehrazi, M ; Kahrizi, S ; Parnianpour, M ; Sharif University of Technology
    Elsevier 
    Abstract
    Multiple joint interactions are critical to produce stable coordinated movements and can be influenced by low back pain and task conditions. Inter-segmental coordination pattern and variability were assessed in subjects with and without chronic nonspecific low back pain (CNSLBP). Kinematic data were collected from 22 CNSLBP and 22 healthy volunteers during repeated trunk flexion-extension in various conditions of symmetry, velocity, and loading; each at two levels. Sagittal plane angular data were time normalized and used to calculate continuous relative phase for each data point. Mean absolute relative phase (MARP) and deviation phase (DP) were derived to quantify lumbar-pelvis and...