Loading...
Search for: blade
0.01 seconds
Total 169 records

    Aero-structural design and optimization of a small wind turbine blade

    , Article Renewable Energy ; Volume 87 , 2016 , Pages 837-848 ; 09601481 (ISSN) Pourrajabian, A ; Nazmi Afshar, P. A ; Ahmadizadeh, M ; Wood, D ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    The study develops a methodology for the aero-structural design including consideration of the starting of a small wind turbine blade. To design a fast-starting blade, starting time was combined with output power in an objective function and the blade allowable stress was considered as a constraint. The output power and the starting time were calculated by the blade-element momentum theory and the simple beam theory was employed to compute the stress and deflection along the blade. A genetic algorithm was employed to solve the constrained objective function, finding an optimal blade for which the starting time was small and output power was high while the stress limitation was also met.... 

    Comparative evaluation of advanced gas turbine cycles with modified blade cooling models [electronic resource]

    , Article Proceedings of the ASME Turbo Expo ; Volume 4, Pages 537-546 , 2006 Tabari, A ; Sharif University of Technology
    Abstract
    Advanced gas turbine cycles use advanced blade cooling technologies to reach high turbine inlet temperature. Accurate modeling and optimization of these cycles depend on blade cooling model. In this study, different models have been used to simulate gas turbine performance. The first model is the continuous model and the second is stage-by-stage model with alternative methods for calculating coolant, stagnation pressure loss and SPR. Variation of specific heat and enthalpy with temperature are included in both models. The composition of gas stream in turbine is changed step by step due to air cooling. These models are validated by two case study gas turbine results, which show good agreement... 

    Effect of plunging amplitude on the performance of a wind turbine blade section

    , Article Aeronautical Journal ; Volume 111, Issue 1123 , 2007 , Pages 571-588 ; 00019240 (ISSN) Soltani, M. R ; Marzabadi, F. R ; Sharif University of Technology
    Royal Aeronautical Society  2007
    Abstract
    Extensive low speed wind-tunnel tests were conducted to study the unsteady aerodynamic behaviour of an airfoil sinusoidally oscillating in plunge. The experiments involved measuring the surface pressure distribution over a range of amplitudes, H = ±5 to ±15cm. In addition, steady state data were acquired and were used to furnish a baseline for further analysis and comparison. The model was oscillated with a constant reduced frequency, k = 0.058, at three mean angles of attack of 0°, 10° and 18°. The unsteady aerodynamic loads were calculated from the surface pressure measurements, 64 ports, along the chord for both upper and lower surfaces of the model. The plunging displacements were... 

    Neural networks in identification of helicopters using passive sensors

    , Article 2006 IEEE International Conference on Systems, Man and Cybernetics, Taipei, 8 October 2006 through 11 October 2006 ; Volume 1 , 2006 , Pages 7-10 ; 1062922X (ISSN); 1424401003 (ISBN); 9781424401000 (ISBN) Sadati, N ; Faghihi, A. H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2006
    Abstract
    An Artificial Neural Network (ANN) based helicopter identification system is proposed. All helicopters emit certain characteristic acoustic signatures, which are specific to them. This is due to some differences in their structures and design. These differences in acoustic signatures can be used with neural networks for detection and classification of different types of helicopters. The conventional system uses the ratio of the main-rotor blade passage frequency (bpf) to the tail-rotor bpf. The ANN is trained to use similar main/tail-rotor information, in addition to the parametric spectral representation technique (Reflection Coefficients). It is also shown that the classifier performance... 

    Performance enhancement using blade tip injection coupled with casing treatment

    , Article International Conference on FANS, London, 9 November 2004 through 10 November 2004 ; Volume 2004 4 , 2004 , Pages 35-44 ; 13561448 (ISSN) Beheshti, B. H ; Teixeira, J. A ; Ivey, P. C ; Ghorbanian, K ; Farhanieh, B ; Sharif University of Technology
    2004
    Abstract
    The casing treatment and flow injection upstream of the rotor tip are two effective approaches in suppressing instabilities or recovering from a fully developed stall. The current work presents a state of the art design for the blade tip injection. This is characterized by a high pressure fluid injecting means for delivery of a jet flow directly into the casing treatment machined into the shroud. The casing treatment is positioned over the blade tip region and exceeds the impeller axially by some 30% of the tip chord both in the upstream and downstream directions. Using an injected mass flow of around 2.4% of the annulus flow, the present design can improve stall margin by up to 7% by... 

    Computational study of parameters affecting turbulent flat plate film cooling

    , Article 2004 ASME Turbo Expo, Vienna, 14 June 2004 through 17 June 2004 ; Volume 3 , 2004 , Pages 23-32 Mahjoob, S ; Taeibi Rahni, M ; Sharif University of Technology
    American Society of Mechanical Engineers  2004
    Abstract
    Blade film cooling is one of the best methods to improve efficiency of gas turbines. In this work, two different methods of film cooling, namely, slot injection and discrete hole injection have been numerically studied on a flat plate. Incompressible, stationary, viscous, turbulent flow has been simulated using the FLUENT CFD code with the standard k-s model. The study of injection angle and velocity ratio show that the optimum film cooling in both methods, occurs at the jet angle of 30° but with the velocity ratio of 1.5 for slot case and 0.5 for discrete hole case. The study of jet aspect ratio in discrete hole method, shows that stretching the hole in spanwise direction increases the film... 

    Aeroelastic analysis of helicopter rotor blade in hover using an efficient reduced-order aerodynamic model

    , Article Journal of Fluids and Structures ; Volume 25, Issue 8 , 2009 , Pages 1243-1257 ; 08899746 (ISSN) Shahverdi, H ; Salehzadeh Noubari, A ; Behbahani Nejad, M ; Haddadpour, H ; Sharif University of Technology
    2009
    Abstract
    This paper presents a coupled flap-lag-torsion aeroelastic stability analysis and response of a hingeless helicopter blade in the hovering flight condition. The boundary element method based on the wake eigenvalues is used for the prediction of unsteady airloads of the rotor blade. The aeroelastic equations of motion of the rotor blade are derived by Galerkin's method. To obtain the aeroelastic stability and response, the governing nonlinear equations of motion are linearized about the nonlinear steady equilibrium positions using small perturbation theory. The equilibrium deflections are calculated through the iterative Newton-Raphson method. Numerical results comprising steady equilibrium... 

    Multi-objective Optimization of a Megawatt Wind Turbine Blade Geometry Using an Evolutionary Algorithm

    , M.Sc. Thesis Sharif University of Technology Mahboubi Fouladi, Hossein (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    Without optimization, it is impossible to reduce the cost of power generation from an efficient megawatt wind turbine. In this work, we present a multi-objective algorithm to optimize the megawatt blade geometry. In this algorithm, the mass of blade and the wind turbine annual energy production (AEP) are considered as the objective functions. The design variables are blade chord, blade twist, airfoil thickness, spar geometry and blade curvature distribution.The constraints are maximum allowable strain for the chosen materials, maximum tip deflection and maximum tip speed. For the internal geometry, we consider two spars and four panels. The blade element momentum method (BEM) is used for... 

    Vortex Shedding Control behind Helicopter Rotor Blades, using Thin Oscillating Plates- Application to Helicopter Noise Reduction

    , M.Sc. Thesis Sharif University of Technology Mohseni, Mohammad Hassan (Author) ; Javadi, Khodayar (Supervisor)
    Abstract
    The interaction of the vortices and helicopter’s blades is the most significant source of generating the main rotor’s noise, especially in landing and rising. The kind of this noise is broadband and it is produced because of establishing the vortices behind the forward blade, their interaction with backward blade, changing their structures and creating turbulency loading. The known method for modeling of the interaction of the vortices structures and solid surfaces is the simple compounding the rod and airfoil. In this project, by using this method, the noise of the interaction of vortex and blade is modeled in the Reynolds number of 48000 with LES and FW-H Analogy as a hibrid method in... 

    Three-dimensional Aerothermal Shape Optimization of Turbine Blade, Using Gradient Adjoint-based Methods

    , Ph.D. Dissertation Sharif University of Technology Zeinalpour, Mehdi (Author) ; Mazaheri, Karim (Supervisor)
    Abstract
    The most important challenge and the most time consuming part of the gradient based optimization algorithms in the aerodynamic shape optimization problems is the evaluation of the sensitivity of the objective function with respect to the design variables. The adjoint method which has been the subject of many research in the recent three decades, is capable of computing the complete gradient information needed for optimization by solving the governing flow equations and their corresponding adjoint equations only once, regardless of the number of design parameters. In this study, the continues adjoint equations for compressible inviscid and viscous flows are derived and the formulation of... 

    The Study of Megawatt Wind Turbine Rotor Performance in Presence of Contamination Using CFD

    , M.Sc. Thesis Sharif University of Technology Mohajer, Abbas (Author) ; Darbandi, Masoud (Supervisor) ; Taiebi Rahni, Mohammad (Supervisor)
    Abstract
    Considering the negative effects of contamination on wind turbine blade performance, we investigate aerodynamics performance of a one- Megawatt wind turbine. To achieve this, we compare the performance and power of the wind turbine with and without contaminations. To calculate the wind turbine output power, we use a developed wind turbine calculator, which benefits from the Blade Element Momentum (BEM) theory. Furthermore, the aerodynamics calculations are performed using of a commercial software for clean and rough airfoils. Considering the change of Reynolds number along the blade axis, the airfoil characteristics are calculated for two Reynolds numbers of 0.5 and 3.5 millions to increase... 

    Investigation of the Effect of Using 3D Airfoils in the First Row Blades of v94.2 Gas Turbine Compressor Using CFX Software

    , M.Sc. Thesis Sharif University of Technology Mohebi, Zeinab (Author) ; Ghorbanian, Kaveh (Supervisor)
    Abstract
    CDA and NACA65 airfoils, originally designed for aircraft engine applications so do not have the best possible performance for heavy-duty industrial gas turbines and should be optimized according to the operating conditions and requirements of these turbines. For example, due to the high mass flow in industrial gas turbines, the first rows of the compressor deal with the distribution of critical velocities and sound level, while in the middle and end rows of the flow, the flow is subsonic. In designing these airfoils, two parameters of wide performance drop and range should be considered. Since the diffusion of the suction surface causes a drop, the design of new airfoils should start with... 

    Turbine blade aerodynamic optimization on unstructured grids using a continuous adjoint method

    , Article ASME 2012 International Mechanical Engineering Congress and Exposition, IMECE 2012, Houston, TX, 9 November 2012 through 15 November 2012 ; Volume 1 , 2012 , Pages 425-431 ; 9780791845172 (ISBN) Zeinalpour, M ; Mazaheri, K ; Irannejad, A ; Sharif University of Technology
    2012
    Abstract
    A gradient based optimization using the continuous adjoint method for inverse design of a turbine blade cascade is presented. The advantage of the adjoint method is that the objective function gradients can be evaluated by solving the adjoint equations with coefficients depending on the flow variables. This method is particularly suitable for aerodynamic design optimization for which the number of design variables is large. Bezier polynomials are used to parameterize suction side of the turbine blade. The numerical convective fluxes of both flow and adjoint equations are computed by using a Roe-type approximate Riemann solver. An approximate linearization is applied to simplify the... 

    Flow and heat transfer analysis of turbine blade cooling passages using network method

    , Article ASME 2012 Gas Turbine India Conference, GTINDIA 2012 ; 2012 , Pages 523-531 ; 9780791845165 (ISBN) Alizadeh, M ; Izadi, A ; Fathi, A ; Khaledi, H ; Sharif University of Technology
    2012
    Abstract
    Modern turbine blades are cooled by air flowing through internal cooling passages. Three-Dimensional numerical simulation of these blade cooling passages is too time-consuming because of their complex geometries. These geometrical complexities exist as a result of using various kinds of cooling technologies such as rib turbulators (inline, staggered, or inclined ribs), pin fin, 90 and 180 degree turns (both sharp and gradual turns, with and without turbulators), finned passage, by-pass flow and tip cap impingement. One possible solution to simulate such sophisticated passages is to use the one-dimensional network method, which is presented in the current work. Turbine blade cooling channels... 

    Experimental investigation of the leadingedge roughness on the boundary layer of a plunging airfoil

    , Article 27th Congress of the International Council of the Aeronautical Sciences 2010, ICAS 2010, 19 September 2010 through 24 September 2010, Nice ; Volume 2 , 2010 , Pages 1582-1588 ; 9781617820496 (ISBN) Rasi Marzabadi, F ; Soltani, M. R ; Masdari, M ; Sharif University of Technology
    2010
    Abstract
    Extensive experimental investigation was conducted to study the effect of leading-edge roughness on the state of the boundary layer of a wind turbine blade section. The application of surface grit roughness simulates surface irregularities that occur on the wind turbine blades. The measurements were done using multiple hot-film sensors and surface pressure transducers in both static and plunging oscillation of the airfoil. Frequency domain analysis was used to determine the state of the unsteady boundary layer  

    Hollow blades for small wind turbines operating at high atitudes

    , Article Journal of Solar Energy Engineering, Transactions of the ASME ; Volume 138, Issue 6 , 2016 ; 01996231 (ISSN) Pourrajabian, A ; Amir Nazmi Afshar, P ; Mirzaei, M ; Ebrahimi, R ; Wood, D. H ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME) 
    Abstract
    Since the air density reduces as altitude increases, operation of small wind turbines (SWTs), which usually have no pitch adjustment, remains challenging at high altitudes due largely to the reduction of starting aerodynamic torque. By reducing the moment of inertia through the use of hollow blades, this study aims to speed up the starting while maintaining the structural integrity of the blades and high output power. A horizontal axis turbine with hollow blades was designed for two sites in Iran with altitude of 500 m and 3000 m. The design variables are the distributions of the chord, twist, and shell thickness and the improvement of output power and starting are the design goals.... 

    Entropy minimization in turbine cascade using continuous adjoint formulation

    , Article Engineering Optimization ; Volume 48, Issue 2 , 2016 , Pages 213-230 ; 0305215X (ISSN) Zeinalpour, M ; Mazaheri, K ; Sharif University of Technology
    Taylor and Francis Ltd 
    Abstract
    A complete continuous adjoint formulation is presented here for the optimization of the turbulent flow entropy generation rate through a turbine cascade. The adjoint method allows one to have many design variables, but still afford to compute the objective function gradient. The new adjoint system can be applied to different structured and unstructured grids as well as mixed subsonic and supersonic flows. For turbulent flow simulation, the k-ω shear-stress transport turbulence model and Roe's flux function are used. To ensure all possible shape models, a mesh-point method is used for design parameters, and an implicit smoothing function is implemented to avoid the generation of non-smoothed... 

    Modal-based damage identification for the nonlinear model of modern wind turbine blade

    , Article Renewable Energy ; Volume 94 , 2016 , Pages 391-409 ; 09601481 (ISSN) Rezaei, M. M ; Behzad, M ; Moradi, H ; Haddadpour, H ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In this paper, the modal-based indices are used in damage identification of the wind turbine blade. In contrast of many of previous researches, the geometric nonlinearity due to the large structural deformation of the modern wind turbines blade is considered. In the first step, the finite element model (FEM) of the rotating blade is solved to obtain the modal features of the deformed structure under operational aerodynamic loading. Next, the accuracy and efficiency of the various modal-based damage indices including the frequency, mode shape, curvature of mode shape, modal assurance, modal strain energy (MSE) and the difference of indices (between the intact and damaged blades) are... 

    A numerical study of geometrical effects on the strouhal number of a circular cylinder

    , Article 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008, Boston, MA, 31 October 2008 through 6 November 2008 ; Volume 1 , 2009 , Pages 57-66 ; 9780791848623 (ISBN) Kazemifar, F ; Molai, M ; Firoozabadi, B ; Ahmadi, G ; Sharif University of Technology
    2009
    Abstract
    In this paper, reducing the Strouhal number of a circular cylinder is studied numerically. Two-dimensional numerical simulations of flow over a normal circular cylinder and various modified circular cylinders are carried out using FLUENT® soft ware. Two small blades are attached to a circular cylinder and the effects of variation of the blades length and the blade angle are studied numerically. The blade angle is chosen 2α=0°, 30°, 90°, 120° and 150°. The blades length is chosen l/d=0.125, 0.25, 0.375. Effects of blade angles and blade lengths were studied for both 2α=0° and 150°. Results show that increasing in blade lengths decreases the Strouhal number. Moreover, as the blade angle was... 

    Effect of amplitude and mean angle-of-attack on the boundary layer of an oscillating aerofoil

    , Article Aeronautical Journal ; Volume 112, Issue 1138 , 2008 , Pages 705-713 ; 00019240 (ISSN) Soltani, M. R ; Bakhshalipour, A ; Sharif University of Technology
    Royal Aeronautical Society  2008
    Abstract
    Extensive experiments were conducted to study the effect of various parameters on the surface pressure distribution and transition point of an aerofoil section used in a wind turbine blade. In this paper details of the variation of transition point on the aforementioned aerofoil are presented. The aerofoil spanned the wind-tunnel test section and was oscillated sinusoidally in pitch about the quarter chord. The imposed variables of the experiments were free stream velocity, amplitude of motion, mean angle-of-attack, and oscillation frequency. The spatial-temporal progressions of the leading-edge transition point and the state of the unsteady boundary-layer were measured using eight...