Loading...
Search for: blade
0.007 seconds
Total 169 records

    Analysis of Blades Surface Effect on Wind Turbine Performance

    , M.Sc. Thesis Sharif University of Technology Sabzehparvar, Amir Ali (Author) ; Sadr Hosseini, Hani (Supervisor) ; Sabzehparvar, Mahdi (Supervisor)
    Abstract
    The development of wind turbine blades model that accurately predict wind turbine thrust in a full range of applicable wind speed has provided a powerful and reliable source for simulation of horizontal axis wind turbine power and thrust force that serves as a valuable tool for wind turbine design and performance analysis. A single-element blade model that reduces the rotor blade characteristics to a lift and drag coefficient vs. angle-of-attack formulation was found to describe accurately the rotor characteristics over a wide operating range. Measurements of wind speed and altitude of wind turbine installation location, rotor speed, and provided thrust is within less than 2% over a wide... 

    Development of Parallel Algorithm for Adjoint Optimization of Turbine Blade

    , M.Sc. Thesis Sharif University of Technology Salehi, Hadi (Author) ; Mazaheri, Karim (Supervisor)
    Abstract
    This study develops an aerodynamic shape optimization code using parallel processing capability based on a gradient-based adjoint method. Calculation of the gradient of the objective function with respect to design variables is the most costly part of the gradient-based optimization algorithms. Applying adjoint methods, gradients can be calculated with solving some additional equations known as the "adjoint equations", instead of direct calculation. In this study, the blade shape optimization is performed by inverse design method and using steepest descent optimization algorithm. The objective function of inverse design problem is the desired blade surface pressure distribution. In each... 

    Vibration Modeling and Analysis of a Wind Turbine Blade based on Third-Order Structural Nonliearities

    , Ph.D. Dissertation Sharif University of Technology Rezaei, Mohammad Mahdi (Author) ; Behzad, Mehdi (Supervisor) ; Haddadpour, Hassan (Co-Advisor) ; Moradi, Hamed (Co-Advisor)
    Abstract
    Aiming to improve the extraction performance of wind energy has led to the noticeable increase of the structural dimensions in the modern wind turbines. The larger blade with more flexibility experiences large structural deformation even under nominal operational loading, so the nonlinear modeling and analysis of these structures have become as important subject of the recent wind turbine researches. In this dissertation, the geometrical exact model of the rotating wind turbine blade under the effects of the tower tip's motion, and also the operational loading comprising the aerodynamic and gravitational loadings is presented. In this way, the geometrical exact beam formulation is developed... 

    Effect of Surface Structure on Drag Reduction

    , M.Sc. Thesis Sharif University of Technology Allahyari, Mostafa (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    This project studies the effects of different blade and different velocity fields on reducing drag coefficient. A numerical simulation was set up for a circular cylinder to represent the effects of blade on reducing drag. In this study, velocity, density and the cylinder diameter were constant and different viscosities were selected for different regime flows. The computational fluid dynamic programmer FLUENT was used to simulate results for this project. Arrays of cylinders were set up to see the changes in velocity profiles and drag coefficients for a range of Re. In this study, I studied three cases of setting up blade and concentrated on friction drag coefficient and pressure drag... 

    Aerodynamic Design of Axial Flow Turbine Stage

    , M.Sc. Thesis Sharif University of Technology Soltaninejad, Mohammad (Author) ; Hajilouy-Benisi, Ali (Supervisor)
    Abstract
    Prediction techniques of axial flow turbine performance for different operating conditions are always developing due to high costs and lack of reliable empirical data. In axial gas turbines, fluid flow is three-dimensional, viscous, and highly turbulent. Nowadays, although flow field specifications are predicted accurately well using computational and numerical tools, the appropriate loss models are required for one-dimensional modeling and optimization in early design phases. In this research, an accurate and a complete investigation of aerodynamic losses in axial flow turbines will be discussed. Some suggested models for calculating losses in axial gas turbines, are considered and... 

    Investigation and Analysis of the Coating Effect on the Contact Pressure and Slip Amplitude in Fretting Fatigue of a Compressor Blade Root

    , M.Sc. Thesis Sharif University of Technology Amini Chehragh, Hassan (Author) ; Adib Nazari, Saeed (Supervisor)
    Abstract
    In many industrial devices and machines, variable loading is applied to the parts, which will lead to fatigue in these parts. Most of these components are in contact with other components, and when the device is operating, low-amplitude movements occur at the contact point. Variable loading conditions and low-amplitude movements at the point of contact can cause failure on parts called FRETTING FATIGUE. This type of failure occurs in many aerospace components, such as where the compressor blade roots connect to the disc. In recent years, many failures due to fretting fatigue has been reported, which has made the need to take solution to prevent this type of failure more and more obvious. One... 

    Aerodynamic Design of Axial Compressor Blade of The Gas Turbine

    , M.Sc. Thesis Sharif University of Technology Ferasat, Ali (Author) ; Hajilouy Benisi, Ali (Supervisor)
    Abstract
    Improving compressor performance and arriving at better conditions has always been considered by researchers and industrialists. However axial compressor design process is time consuming, very costly, and involves uncertainties and iterations such that sometimes the preset targets are not achieved. Therefore it is required to be able to perform preliminary design and specify the compressor geometry and blade specifications and predict the performance characteristics with a fast, cheap method with required accuracy suitable for this step before detailed design and manufacture. Also some design methods need a primary geometry that is generated by these methods.In this work, towards achieving... 

    Effect of Blade fin on Pressure Drop and Heat Transfer in Microchannels

    , M.Sc. Thesis Sharif University of Technology Beheshti, Alireza (Author) ; Nouri Borujerdi, Ali (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    Nowadays, the cooling of electronic equipment has become a challenge for designers and scientists due to their progress. One of the most effective solutions for cooling these devices is using microchannel heat sinks. Researchers conducted so many studies experimentally, numerically, or a combination of them to increase the efficiency of microchannel heat sinks. Several methods have been proposed in previous studies to improve the cooling performance, such as using fins, nanoparticles, porous material, etc. Although increasing the heat exchange surface by using fins is caused to increase heat transfer, it also causes an increase in pressure drop. For this reason, researchers are looking for... 

    A novel approach to design reversible counter rotating propeller fans

    , Article ASME 2012 Gas Turbine India Conference, GTINDIA 2012, 1 December 2012 through 1 December 2012 ; December , 2012 , Pages 265-270 ; 9780791845165 (ISBN) Abbaszadeh, M ; Parizi, P. N ; Taheri, R ; Sharif University of Technology
    2012
    Abstract
    Because of their high performance and unique abilities like producing none-rotating wake, Counter Rotating Propellers (C.R.P.) are being used in many advanced propulsion or ventilation systems. But due to complicated design procedure of C.R.P. fans up to now it was not possible to apply the concept in reversible systems. For the first time in this research, a new method presented to design a reversible counter rotating propeller system. This method is based on designing a basic C.R.P. by a reliable edition of blade element theory to achieve maximum performance in main rotating course and then to optimize it in order to have almost same performance in reverse rotating course. After expressing... 

    Numerical and experimental study of a reversible axial flow fan

    , Article International Journal of Computational Fluid Dynamics ; Volume 34, Issue 3 , 2020 , Pages 173-186 Abdolmaleki, M ; Mohammadian Bishe, E ; Afshin, H ; Farhanieh, B ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    Reversible axial flow fans, used in tunnel ventilation systems are designed in a way that as the direction of impeller rotation changes, suction and discharge directions change without any sensible change in flow rate and pressure. Also, their reversibility must be higher than 90%. Therefore, the blade profiles of these fans (S-shaped or elliptic) are designed symmetrically. In the current work, a reversible axial flow fan was studied experimentally and numerically in various ambient conditions and blade positions. Additionally, the experimental test of the fan was performed according to the AMCA-210 standard. Comparison of simulation and experimental results indicated the acceptable... 

    Identification of nonlinear model for rotary high aspect ratio flexible blade using free vibration response

    , Article Alexandria Engineering Journal ; Volume 59, Issue 4 , August , 2020 , Pages 2131-2139 Mahariq, I ; Kavyanpoor, M ; Ghalandari, M ; Nazari, M. A ; Bui, D. T ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    Nonlinear identification of a narrow cantilever blade undergoing free vibration was studied. In the absence of forced excitation and because of general data deficiency of this system, the current identification methods cannot be applied with sufficient accuracy. A new identification approach was introduced in the present study based on nonlinear free vibration decay. Nonlinear free response of the presented system is determined by the coupling of generalized variation iteration and the modified differential transformation methods. The comparisons between the experiments and calculations is highlighted the good accuracy of the identified nonlinear model. © 2020 Faculty of Engineering,... 

    Application of multilayer perceptron network for unsteady three dimensional aerodynamic load prediction

    , Article 25th AIAA Applied Aerodynamics Conference, 2007, Miami, FL, 25 June 2007 through 28 June 2007 ; Volume 2 , 2007 , Pages 1197-1202 ; 10485953 (ISSN) ; 1563478986 (ISBN); 9781563478987 (ISBN) Gholamrezaei, M ; Soltani, M. R ; Ghorbanian, K ; Amiralaei, M. R ; Sharif University of Technology
    2007
    Abstract
    Surface pressure measurements were conducted for a pitch oscillation wing in a subsonic closed circuit wind tunnel. Experimental results have been used to train a multilayer perceptron network to foresee the effect of modification of oscillation amplitude and reduced frequency. Consistent results are obtained both for the training data as well as generalization to other amplitudes and reduced frequencies. This work indicates that artificial neural networks can reliably predict aerodynamic coefficients and forecast the effects of oscillation amplitude as well as reduced frequency on the wind turbine blade performance. Moreover, this study introduces a new tool for the designers to have enough... 

    Comparative evaluation of advanced gas turbine cycles with modified blade cooling models

    , Article 2006 ASME 51st Turbo Expo, Barcelona, 6 May 2006 through 11 May 2006 ; Volume 4 , 2006 , Pages 537-546 ; 0791842398 (ISBN); 9780791842393 (ISBN) Tabari, A ; Khaledi, H ; Hajilouy Benisi, A ; Sharif University of Technology
    2006
    Abstract
    Advanced gas turbine cycles use advanced blade cooling technologies to reach high turbine inlet temperature. Accurate modeling and optimization of these cycles depend on blade cooling model. In this study, different models have been used to simulate gas turbine performance. The first model is the continuous model and the second is stage-by-stage model with alternative methods for calculating coolant, stagnation pressure loss and SPR. Variation of specific heat and enthalpy with temperature are included in both models. The composition of gas stream in turbine is changed step by step due to air cooling. These models are validated by two case study gas turbine results, which show good agreement... 

    Comparative investigation of advanced combined cycles

    , Article 2006 ASME 51st Turbo Expo, Barcelona, 6 May 2006 through 11 May 2006 ; Volume 4 , 2006 , Pages 475-485 ; 0791842398 (ISBN); 9780791842393 (ISBN) Khaledi, H ; Sarabchi, K ; Sharif University of Technology
    2006
    Abstract
    Combined cycles, at present, have a prominent role in the power generation and advanced combined cycles efficiencies have now reached to 60 percent. Examination of thermodynamic behavior of these cycles is still carried out to determine optimum configuration and optimum design conditions for any cycle arrangement. Actually the performance parameters of these cycles are under the influence of various parameters and therefore the recognition of the optimum conditions is quiet complicated. In this research an extensive thermodynamic model was developed for analyzing major parameters variations on gas turbine performance and different configurations of advanced steam cycles: dual and triple... 

    On the heat treatment of Rene-80 nickel-base superalloy

    , Article Journal of Materials Processing Technology ; Volume 176, Issue 1-3 , 2006 , Pages 240-250 ; 09240136 (ISSN) Safari, J ; Nategh, S ; Sharif University of Technology
    2006
    Abstract
    Rene-80, as an alloy for production of the jet turbine blades, shows high mechanical properties as well as microstructure stability during the high temperature engine operation. In this study we tried to have a deep insight on the microstructure of the cast Rene-80 and the evolution of microstructure during the different stages of the relatively complex GE class-A heat treatment. Although the solution heat treatment homogenized the chemical alloy segregation resulted from the casting to some extent, it did not cause all the casting γ′ particles to dissolve completely in the matrix. Primary aging caused growth in the residue particles as well as growth of the new precipitated particles, which... 

    Development of Actuator Disk Method to Simulate Fluid-structure Interaction in Megawatt Wind Turbine Blade Analysis

    , Ph.D. Dissertation Sharif University of Technology Behrouzifar, Ali (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    Recent decades have seen a growing demand for high-power wind turbines resulting in turbines with larger blades and the advent of high-megawatt wind turbines. The blades of the megawatt-scale turbines experience more complicated flow phenomena compared to those of the smaller-scale wind turbines. Needless to say, the importance of an accurate solution and detailed analysis of all the parameters, including blades aerodynamic and aeroelastic performance as well as fluid-structure interaction, is more significant for the megawatt-scale turbines compared to smaller-scale turbines. The conventional methods of aerodynamic solutions for the blade, including analytical methods, such as BEMT78 and... 

    Doctor-Blade Printing of The Absorber Layer of Mixed-Cation and anion Perovskite Solar Cells in Ambient Air

    , M.Sc. Thesis Sharif University of Technology Rahbari, Hamed (Author) ; Nemati, Ali (Supervisor) ; Taghavinia, Nima (Co-Supervisor)
    Abstract
    In just a decade, perovskite solar cells have emerged as the next generation of photovoltaic technologies due to their high efficiency, low manufacturing cost, and easy fabrication methods compared to silicon solar cells. To date, highly efficient perovskite cells (with an efficiency of approximately 25.5%) have been fabricated on small substrates by a spin-coating process. In the spin coating process, perovskite precursor is spread on the substrate through shear force. However, the reproducibility of the cells coated with this method varies between research laboratories. Furthermore, since the solution is wasted during the deposition of the perovskite precursor on large substrates, a... 

    Combination of Two-Stage Optimized Active Control of Edgewise vibrations of Wind Turbine Blades by using Robotic Arms

    , M.Sc. Thesis Sharif University of Technology Behzadi, Mohammad Amin (Author) ; Moradi, Hamed (Supervisor)
    Abstract
    Renewable energies and their various types have been recognized as sustainable solutions to address the challenges arising from increasing energy consumption and environmental issues. The use of wind energy as one of the renewable energy sources has particular advantages, considering it as one of the most sustainable energy sources. One of the key factors in wind turbine development is the diversity and multiplicity in their structural designs. Therefore, the design of wind turbine structures with characteristics such as suitable strength, high energy efficiency, optimal cost, and high reliability is of great importance. By employing various sciences such as vibrations and optimization in... 

    Effect of surface contamination on the performance of a section of a wind turbine blade

    , Article Scientia Iranica ; Volume 18, Issue 3 B , 2011 , Pages 349-357 ; 10263098 (ISSN) Soltani, M. R ; Birjandi, A. H ; Seddighi Moorani, M ; Sharif University of Technology
    2011
    Abstract
    A series of low speed wind tunnel tests were conducted on a section of a 660 kW wind turbine blade to examine the effects of distributed surface contamination on its performance characteristics. The selected airfoil was tested with a clean surface, two types of zigzag roughness, strip tape roughness and distributed contamination roughness. The straight and zigzag leading edge roughness models simplify the contamination results in an early turbulence transition. In this study, surface contamination was simulated by applying 0.5 mm height roughness over the entire upper surface of the airfoil. The distribution density varied from the leading edge to the trailing edge of the model. Our data... 

    Failure analysis of a gas turbine compressor

    , Article Engineering Failure Analysis ; Volume 18, Issue 1 , 2011 , Pages 474-484 ; 13506307 (ISSN) Farrahi, G. H ; Tirehdast, M ; Masoumi Khalil Abad, E ; Parsa, S ; Motakefpoor, M ; Sharif University of Technology
    Abstract
    During the shut down period, a 32. MW gas turbine experienced a severe failure accompanied by a loud noise near its second natural frequency at 4200. rpm. After opening the turbine casing, it was revealed that the disks of stages 16 and 17 of the compressor had been fractured and all of the stationary and rotary blades of stages 14-18 of the compressor had been detached from the dovetail region of the disks. The degree of damage was such that repairing the compressor was not economical, and thus, the compressor was no longer able to be used. Diagnostic work was carried out using different finite element models and fractography analysis. Analysis showed that multiple cracks had been initiated...