Loading...
Search for: boundary-value-problems
0.006 seconds

    Prediction of the penetrated rust into the microcracks of concrete caused by reinforcement corrosion

    , Article Applied Mathematical Modelling ; Volume 35, Issue 5 , 2011 , Pages 2529-2543 ; 0307904X (ISSN) Kiani, K ; Shodja, H. M ; Sharif University of Technology
    2011
    Abstract
    Consider a steel-rust-concrete composite consisting of a circular cylindrical concrete cover and a coaxial uniformly corroding steel reinforcement. Prediction of the amount of rust penetrated into the microcracks of concrete cover from a set of data measured at the surface of the concrete is of particular interest. The steel is assumed to be linear isotropic and rust follows a power law stress-strain relation. For the concrete, anisotropic behavior and post-cracking softening model is employed. The formulations lead to a nonlinear boundary value problem which is solved analytically. A key parameter β, defined as the ratio of the volume of corrosion products inside the cracks to the volume of... 

    Axial Stiffness of a Detached Anchor Plate in a Transversely Isotropic Solid

    , M.Sc. Thesis Sharif University of Technology Ordookhani, Ali (Author) ; Mohammadi Shoja, Hossein (Supervisor) ; Eskandari, Morteza (Co-Advisor)
    Abstract
    In this study, the analytical treatment of an anchor plate buried in a transversely isotropic half-space and subjected to a normal point load is addressed. In reality, the tension face of the anchor plate is detached from the soil and the edges of the detached zone extend to a region greater than the anchor plate area. To simulate this situation, the anchor plate is modeled as a rigid circular disk located in a penny-shaped crack and it is in smooth contact with only single face of the crack. With the aid of an appropriate displacement potential function and Hankel transform, the governing equations of the problem are written as a set of triple integral equations. Employing some mathematical... 

    The Inverse Electromagnetic Scattering Problem

    , M.Sc. Thesis Sharif University of Technology Sajedi, Masoumeh (Author) ; Hesaaraki, Mahmoud (Supervisor)

    Path Planning and Design of Optimal Guidance Algorithm for a High Speed Planing Craft

    , M.Sc. Thesis Sharif University of Technology Ghorbani Posht Mashhadi, Mohammad Taghi (Author) ; Salarieh, Hassan (Supervisor)
    Abstract
    In this thesis, the problem of trajectory planning for a high speed planing boat under nonlinear equality and inequality constraints is addressed. First, a nonlinear mathematical model of the craft’s dynamics is derived. To solve a trajectory optimization problem, we can utilize the indirect or direct methods. In the indirect methods, maximum principle of Pontryagin is used to transform the optimal control problem into Euler Lagrange equations, on the other hand, in the direct methods it is necessary to transcribe the optimal control problem into a nonlinear programming problem (NLP) by discretization of states and controls. The resulted NLP can be solved by well-developed algorithms such as... 

    A Tilt of a Surface Rigid Circular Foundation Due to an Inclined Buried Point Load in a Transversely Isotropic Half-Space

    , M.Sc. Thesis Sharif University of Technology Khazaeli, Shervin (Author) ; Mohammadi Shodja, Hossein (Supervisor) ; Eskandari, Morteza (Supervisor)
    Abstract
    The following dissertation examines the interaction between the free surface of a homogenous transversely isotropic half-space and a rigid circular foundation. The whole system is under a vertical and an inclined point loads applied simultaneously on the foundation and at the specified depth of the medium, respectively. Determination of the Green’s functions for the proposed mixed boundary value problem is of interest. By employment of the boundary conditions, the governing equations are represented in terms of a dual integral equation which are subsequently solved analytically. Furthermore, the exact closed-form expressions of the tilt (rotation and settlement) of the loaded rigid foundation... 

    Elastic Responses of a Transversely Isotropic Half-Space Reinforced by a Buried Extensible Membrane under Internal Loading

    , M.Sc. Thesis Sharif University of Technology Shahsavarian, Ali (Author) ; Eskandari, Morteza (Supervisor)
    Abstract
    In this research, a homogeneous elastic half-space with transversely isotropic behavior, reinforced by an isotropic thin membrane is investigated under static loading with an analytical approach. The membrane is considered as an infinite plane with a thickness of negligible and buried at the arbitrary depth from the surface of the half-space, also its flexural strength is neglected and only the in-plane stiffness is considered for it. The reinforced half-space is investigated under several concentrated and distributed static loads, which are applied to the surface of the half-space or buried at the depth of the membrane. The membrane is first modeled as a three-dimensional elastic layer and... 

    A new orthonormal polynomial series expansion method in vibration analysis of thin beams with non-uniform thickness

    , Article Applied Mathematical Modelling ; Volume 37, Issue 18-19 , 2013 , Pages 8543-8556 ; 0307904X (ISSN) Ebrahimzadeh Hassanabadi, M ; Nikkhoo, A ; Vaseghi Amiri, J ; Mehri, B ; Sharif University of Technology
    2013
    Abstract
    In this article, OPSEM (Orthonormal Polynomial Series Expansion Method) is developed as a new computational approach for the evaluation of thin beams of variable thickness transverse vibration. Capability of the OPSEM in assessing the free vibration frequencies and mode shapes of an Euler-Bernoulli beam with varying thickness is discussed. Multispan continuous beams with various classical boundary conditions are included. Contribution of BOPs (Basic Orthonormal Polynomials) in capturing the beam vibrations is also illustrated in numerical examples to give a quantitative measure of convergence rate. Furthermore, OPSEM is adopted for the forced vibration of a thin beam caused by a moving mass.... 

    Numerical modeling of pulse tube refrigerator and sensitivity analysis of simulation

    , Article HVAC and R Research ; Volume 19, Issue 3 , 2013 , Pages 242-256 ; 10789669 (ISSN) Jahanbakhshi, R ; Saidi, M. H ; Ghahremani, A. R ; Sharif University of Technology
    2013
    Abstract
    In this article a double-inlet pulse-tube refrigerator (DIPTR) is modeled using the nodal analysis technique. The main complexity of the problem is oscillatory and unsteady characteristics of the flow. Solving the flow field in the regenerator section of the system as a porous medium with nonlocal thermal equilibrium is challenging. Governing equations are developed applying mass, energy, and momentum equations to different finite volumes in each component of DIPTR. A numerical code (SharifPTR), with graphical user interface, has been developed to investigate the influence of geometrical and working parameters on performance. The governing equations are a system of boundary value problems.... 

    Stability under Γ-convergence of least energy solutions for semilinear problems in the whole ℝN

    , Article SIAM Journal on Mathematical Analysis ; Volume 43, Issue 4 , 2011 , Pages 1759-1786 ; 00361410 (ISSN) Moameni, A ; Sharif University of Technology
    2011
    Abstract
    We study the homogenization of semilinear elliptic equations in divergence form with discontinuous oscillating coefficients in the whole ℝN. As is well known, the homogenization process in a classical framework is concerned with the study of asymptotic behavior of solutions u Isin; of boundary value problems when the period ∈ > 0 of the coefficients is small. By extending some of the classical homogenization results for quasi-linear elliptic equations to unbounded domains and, making use of various variational techniques, we shall establish some stability results under Γ-convergence of least energy solutions for such boundary value problems  

    Axisymmetric problem of energetically consistent interacting annular and penny-shaped cracks in piezoelectric materials

    , Article Journal of Applied Mechanics, Transactions ASME ; Volume 78, Issue 2 , 2011 ; 00218936 (ISSN) Shodja, H. M ; Moeini Ardakani, S. S ; Eskandari, M ; Sharif University of Technology
    Abstract
    The axisymmetric problem of a concentric set of energetically consistent annular and penny-shaped cracks in an infinite piezoelectric body subjected to uniform far-field electromechanical loading is addressed. With the aid of a robust innovated technique, the pertinent four-part mixed boundary value problem (MBVP) is reduced to a decoupled Fredholm integral equation of the second kind. The results of two limiting cases of a single penny-shaped crack and a single annular crack are recovered. The contour plots of dimensionless intensity factors (IFs) at each crack front provide the stress and electric displacement intensity factors (SIFs and EDIFs, respectively) for all combination of crack... 

    Coupling behavior of the pH/temperature sensitive hydrogels for the inhomogeneous and homogeneous swelling

    , Article Smart Materials and Structures ; Volume 25, Issue 8 , 2016 ; 09641726 (ISSN) Mazaheri, H ; Baghani, M ; Naghdabadi, R ; Sohrabpour, S ; Sharif University of Technology
    Institute of Physics Publishing  2016
    Abstract
    In this work, a model is developed to continuously predict homogeneous and inhomogeneous swelling behavior of pH/temperature sensitive PNIPAM hydrogels. Employing the model, homogeneous swelling of the pH/temperature sensitive hydrogel is investigated for free and biaxial constrained swelling cases. Comparing the model results with the experimental data available in the literature, the validity of the model is confirmed. The model is then employed to investigate inhomogeneous swelling of a spherical shell on a hard core both analytically and numerically for pH or temperature variations. In this regard, numerical tools are developed via preparing a user defined subroutine in ABAQUS software.... 

    Instability of nanocantilever arrays in electrostatic and van der waals interactions

    , Article Journal of Physics D: Applied Physics ; Volume 42, Issue 22 , 2009 ; 00223727 (ISSN) Ramezani, A ; Alasty, A ; Sharif University of Technology
    2009
    Abstract
    The structural instability of an array of cantilevers, each of which interacts with two neighbouring beams through electrostatic and van der Waals forces, is studied. Distributed and lumped parameter modelling of the array result in a set of coupled nonlinear boundary value problems and a set of coupled nonlinear equations, respectively. These coupled nonlinear systems are solved numerically for different numbers of beams in the array to obtain the pull-in parameters. The pull-in parameters converge to constant values with an increase in the number of beams in the array. These constants, which are important in the design of cantilever arrays, are compared for the distributed and lumped... 

    UWB orthogonal pulse design using Sturm–Liouville boundary value problem

    , Article Signal Processing ; Volume 159 , 2019 , Pages 147-158 ; 01651684 (ISSN) Amini, A ; Mohajerin Esfahani, P ; Ghavami, M ; Marvasti, F ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    The problem of designing UWB pulses which meet specific spectrum requirements is usually treated by filtering common pulses such as Gaussian doublets, modified Hermite polynomials and wavelets. When there is the need to have a number of orthogonal pulses (e.g., in a multiuser scenario), a naive approach is to filter all the members of an orthogonal set, which is likely to destroy their orthogonality property. In this paper, we study the design of a set of pulses that simultaneously satisfy the orthogonality property and spectrum requirements. Our design is based on the eigenfunctions of Sturm–Liouville boundary value problems. Indeed, we introduce Sturm–Liouville differential equations for... 

    Scattering of transverse surface waves by a piezoelectric fiber in a piezoelectric half-space with exponentially varying electromechanical properties

    , Article Zeitschrift fur Angewandte Mathematik und Physik ; Volume 70, Issue 2 , 2019 ; 00442275 (ISSN) Ghafarollahi, A ; Shodja, H. M ; Sharif University of Technology
    Birkhauser Verlag AG  2019
    Abstract
    In the present work, an analytical solution is presented for the scattering of transverse surface waves by a homogeneous piezoelectric fiber contained in a functionally graded piezoelectric half-space with exponential variation. The boundary value problem of interest is solved by constructing an appropriate set of multipole functions which satisfy: (a) the electromechanical field equations in the half-space, (b) the boundary conditions along its free surface, and (c) the far-filed radiation conditions. It is shown that the simple poles of these functions are related to the roots of the pertinent dispersion relation. For the case of electrically short condition along the free surface of the... 

    Interaction of a screw dislocation and an embedded nonuniformly coated circular fiber with imperfect interfaces

    , Article International Journal of Solids and Structures ; Volume 182-183 , 2020 , Pages 295-306 Kamali, M. T ; Shodja, H. M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The eccentricity between the circular fiber and its coating as well as the imperfection at the fiber-coating-matrix interfaces associated with certain composites can have a remarkable effect on the movement of a dislocation. For an in-depth understanding of such phenomena, the present work provides an exact analytical solution for the interaction between an eccentrically coated circular inhomogeneity embedded in an infinite elastic medium with imperfect interfaces and a screw dislocation. The dislocation may be located inside one of the regions: the core inhomogeneity, coating, or the matrix. The corresponding boundary value problem is solved by using conformal mapping and complex potential... 

    A new method for solving nonhermitian perturbation theory for the microdisc resonators with phi-periodic refractive index

    , Article Proceedings of SPIE- Silicon Photonics and Photonic Integrated Circuits, Strasbourg, 7 April 2008 through 10 April 2008 ; Volume 6996 , 2008 ; 0277786X (ISSN) ; 9780819471949 (ISBN) Keyvaninia, S ; Karvar, M ; Bahrampour, A ; Sharif University of Technology
    2008
    Abstract
    The radiation loss in the whispering gallery resonators causes the eigenvalues of the Maxwell equations with the corresponding boundary conditions complex. The corresponding operators are nonhermitian and for these operators the standard perturbation techniques have some difficulties. In this paper by employing the Floquet theorem a new technique for the φ periodic perturbations is developed. The method is applied to obtain the change of resonance frequencies and losses of φ -perturbed microresonators with cylindrical symmetry. The results are compatible with that are obtained by the Volume Current Method  

    Spectral equivalent inclusion method: Anisotropic cylindrical multi-inhomogeneities

    , Article Journal of the Mechanics and Physics of Solids ; Volume 56, Issue 12 , December , 2008 , Pages 3565-3575 ; 00225096 (ISSN) Shokrolahi Zadeh, B ; Shodja, H. M ; Sharif University of Technology
    2008
    Abstract
    Consider a set of nested infinitely extended elastic cylindrical bodies possessing general cylindrical anisotropy embedded in an unbounded elastic isotropic medium. For general far-field loading, the nature of the elastic fields inside the inhomogeneities is predicted and a number of pertinent attractive properties is noted and proved. Moreover, the associated equivalent inclusion method (EIM) is concisely formulated. The concepts of the homogenization, spectral consistency conditions, and the so-called Eshelby-Fourier tensor are introduced. As a result the tedious and lengthy algebra encountered in the conventional EIM is circumvented and the corresponding large number of unknowns is... 

    Greatly reduced radiation loss in planar waveguides with two-dimensional conducting interfaces

    , Article IET Optoelectronics ; Volume 2, Issue 4 , 2008 , Pages 158-164 ; 17518768 (ISSN) Sarrafi, P ; Zareian, N ; Mehrany, K ; Sharif University of Technology
    2008
    Abstract
    A new strategy for radiation loss reduction in curved slab waveguides is presented. The proposed strategy is based on the proper modification of the boundary conditions at the core-to-cladding interface, whereupon extremely thin conductive nanolayers with non-zero surface conductance are imposed. The obtained numerical results show a noticeable decrease in the overall loss level. © 2008 The Institution of Engineering and Technology  

    Application of the homotopy perturbation method to linear and nonlinear fourth-order boundary value problems

    , Article Physica Scripta ; Volume 77, Issue 5 , 2008 ; 00318949 (ISSN) Roohi, E ; Rasi Marzabadi, F ; Farjami, Y ; Sharif University of Technology
    2008
    Abstract
    In this study, we applied the homotopy perturbation (HP) method for solving linear and nonlinear fourth-order boundary value problems. The analytical results of the boundary value problems have been obtained in terms of a convergent series with easily computable components. Comparisons between the results of the HP method and the analytical solution showed that this method gives very precise results with a few terms. In the implied HP method, some unknown parameters in the initial guess are introduced, which are identified after applying boundary conditions. This improvement results in higher accuracy. © 2008 The Royal Swedish Academy of Sciences  

    Closed-form approximation and numerical validation of the influence of van der Waals force on electrostatic cantilevers at nano-scale separations

    , Article Nanotechnology ; Volume 19, Issue 1 , 2008 ; 09574484 (ISSN) Ramezani, A ; Alasty, A ; Akbari, J ; Sharif University of Technology
    2008
    Abstract
    In this paper the two-point boundary value problem (BVP) of the cantilever deflection at nano-scale separations subjected to van der Waals and electrostatic forces is investigated using analytical and numerical methods to obtain the instability point of the beam. In the analytical treatment of the BVP, the nonlinear differential equation of the model is transformed into the integral form by using the Green's function of the cantilever beam. Then, closed-form solutions are obtained by assuming an appropriate shape function for the beam deflection to evaluate the integrals. In the numerical method, the BVP is solved with the MATLAB BVP solver, which implements a collocation method for...