Loading...
Search for: cancerous-cells
0.007 seconds

    Design, Simulation and Fabrication of a Centrifugal Microfluidic Device for Circulating Tumor Cells Separation

    , M.Sc. Thesis Sharif University of Technology Naghdloo, Amin (Author) ; Shamloo, Amir (Supervisor) ; Nouri Borujerdi, Ali (Supervisor)
    Abstract
    In this project, two centrifugal microfluidic platforms with the goal of separation and genetical study of circulating tumor cells have been designed, simulated and fabricated. Circulating tumor cells are the ones that are detached from the cancer tumors, entered the blood and disseminated the danger of cancer through other parts of the body. Both passive and active methods of separation are investigated in this study. The passive method is based on the inertial effects of the fluid and the active method is based on the magnetophoretic force exerted from an external magnetic field. In order to use the active method, the magnetic nanoparticles are attached to the breast cancer cells by the... 

    Design and Fabrication of a Microfluidic Device to Study the Growth of Breast Cancer Cell

    , M.Sc. Thesis Sharif University of Technology Mohammad Hashemi, Hanieh (Author) ; Vosughi, Manuchehr (Supervisor) ; Shamloo, Amir (Supervisor) ; Naserifar, Naser (Supervisor)
    Abstract
    for decades Cancer has been one of the major causes of death universally. Though extensive efforts in developing new anticancer therapies, they face failures in clinical trials and curing the sick owing to time consuming and expensive preclinical models with poor predictions of drug responses in human. To address this challenge it is crucial to develop preclinical models mimicking the main aspects of a tumor that can provide effective prediction of therapeutic responses. Tumor on chip technology has appeared as a promising approach for providing effective cancer models and reliable preclinical predictions. In this project, collagen was first extracted as the main constituent of the tumor... 

    Multi- and Single-cellular Encapsulation within Microchannels for Effective Cell Lysis and DNA Extraction and Purification

    , M.Sc. Thesis Sharif University of Technology Hassani Gangaraj, Mojtaba (Author) ; Shamloo, Amir (Supervisor)
    Abstract
    In this study a droplet-based microfluidic system is desighned and fabricated to effectiverly lyse MCF7 cells and extract and purify their DNAs. The main purpose of this study is to transfer all the steps from macro scale to a microfluidic system containing a fluidic chip. This system is a semi automatic system and every part of the lysis and purification process is performed in one step. The first step is to encapsulate single cells and multi cells inside the droplets. By controlling the concentration of the cell solution, the number of encapsulated cells inside the droplet is efficiently and easily controlled and the cells were encapsulated as single cells and as multi cells inside the... 

    Investigation and Characterization of Circulating tumor Cells (CTCs) by the Microfluidics Systems

    , M.Sc. Thesis Sharif University of Technology Yari, Alireza (Author) ; Vossoughi, Manoucher (Supervisor) ; Alemzadeh, Iran (Supervisor) ; Shamloo, Amir (Supervisor)
    Abstract
    Cancer is the second leading cause of death among humans as one of the major human concerns. More than 500,000 people die of cancer each year in the United States alone. Cancer mortality is mainly due to cancer metastasis. Metastasis is the escape of cancer cells from a primary tumor, the circulation of cells in the circulatory system (CTSs), the penetration of/from vessel wall, and the formation of a secondary tumor. It is still not clear how the cells survive in the circulatory system, along with the mechanical pressures and stresses that exist in the body's capillary channals. In this study, a microcirculation model for circulating cells with barriers was designed and constructed by the... 

    Simulation, Evaluation and Fabrication of a Two-step Microfluidic System to Separate Circulating Tumor Cells

    , M.Sc. Thesis Sharif University of Technology Mir Mohammad Sadeghi, Fatemeh Sadat (Author) ; Vosoughi, Manouchehr (Supervisor) ; Alamzadeh, Iran (Supervisor)
    Abstract
    Cancer is an abnormal growth of cells which is one of the major cause of worldwide’s mortality. Circulating Tumor Cells (CTCs) are rare cancer cells released from the primary or metastatic tumors and transported though the peripheral circulatory system and spreads in body and seize healthy organs. Early detection of CTCs can help in overtaking the cancer, hence isolation of CTCs is an essential step for many therapeutics. In spite of its clinical potential, the isolation and detection of CTCs has been a challenging task due to its rare presence amongst other blood cells (as low as 1–10 CTCs per billions of blood cells), similarity to white blood cell in size and also variability in terms of... 

    Multidisciplinary Design Optimization of a Nanorobot for Drug Delivery to Cancer Cells Based on Metaheuristic Algorithms

    , M.Sc. Thesis Sharif University of Technology Kazembeigi, Saeideh (Author) ; Abedian, Ali (Supervisor) ; Ghorbanian, Kaveh (Supervisor)
    Abstract
    This thesis is about multidisciplinary design optimization of MRI ¬controlled robots with a nonlinear model approach in the cardiovascular system and simulates its behavior to reach cancer cells. Such robots, designed to perform medical procedures with minimal side effects to the patient, include a set of ferromagnetic nanoparticles attached to the polymer and disposable drugs such as cancer drugs.The disciplines considered in this issue include structure, hydrodynamics, propulsion, controllability, and trajectory. The proposed model in this study, in addition to the main forces acting on the robot such as magnetic force, hydrodynamics, and apparent weight, also examines other forces due to... 

    Numerical Study of Enhancement of Inflection Point Focusing for Blood Cell Separation

    , M.Sc. Thesis Sharif University of Technology Mirtalebi, Elnaz (Author) ; Moosavi, Ali (Supervisor) ; Sadrhosseini, Hani (Co-Supervisor)
    Abstract
    Today, the determination and therapy of numerous illnesses, including malignant growth, relies upon the information and assessment of platelets, so blood testing and cell examination is fundamental to survey the movement of disease. The lab on a chip innovation is utilized as an extremely productive device in cell studies. The lab on a chip is used as a foundation and a substrate for making a legitimate stream for cell processes in medication. This innovation is a gadget or framework with millimeters or centimeters aspects like a chip, and it performs research facility handling on a micron-scale. In spite of the fact that it has a few impediments, it has so many values; for example, it... 

    Simulation, Design, and Fabrication of a Droplet-Based Microfluidic Device to Study The Role of Tumor Microenvironment and Drug Effects on the Behavior of Multicellular Tumor Spheroids

    , Ph.D. Dissertation Sharif University of Technology Besanjideh, Mohsen (Author) ; Shamloo, Amir (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    Despite the extensive research conducted so far to treat cancer, this disease is still one of the main causes of death worldwide. The results of recent studies reveal the importance of the tumor microenvironment in the growth, proliferation, and invasion of the primary tumor. Most common models in cancer research, such as 2-dimensional in vitro models and xenografts, do not have sufficient ability to mimic the interaction of tumors with human stromal tissue. Therefore, the implementation of 3-dimensional in vitro models with the ability to replicate tumor microenvironments is essential. In this study, a microfluidic platform has been introduced to create parallel models of the tumor... 

    Effects of Square Electrical Pulses on Forcing Silver Nanoparticles into Cancer Cells: a Simulation Study

    , M.Sc. Thesis Sharif University of Technology Mirshahi, Salim (Author) ; Saeedi, Mohammad Saeed (Supervisor) ; Sani, Mahdi (Co-Advisor)
    Abstract
    In recent decades, metal nanoparticles have been used in medicine for example in cancer treatment. There have always been debates on the nanoparticles specifications such as particle size, amount of surface charge and the particle material. Meanwhile, the study on selecting appropriate properties of nanoparticles for this purpose is very essential and expensive in medical science. In order to access the best efficiency and the least mortality of the patients in treatments, simulation studies can support the medical scientists. In this thesis, the goal is to study transferring nanoparticles as a drug or included drugs through created hypothetical micro-channels in cancerous cells membrane.... 

    Zinc ferrite spinel-graphene in magneto-photothermal therapy of cancer

    , Article Journal of Materials Chemistry B ; Vol. 2, Issue. 21 , 2014 , p. 3306-3314 Akhavan, O ; Meidanchi, A ; Ghaderi, E ; Khoei, S ; Sharif University of Technology
    Abstract
    A magneto-photothermal therapy for cancer (in vitro photothermal therapy of prostate cancer cells and in vivo photothermal therapy of human glioblastoma tumors in the presence of an external magnetic field) was developed using superparamagnetic zinc ferrite spinel (ZnFe2O4)-reduced graphene oxide (rGO) nanostructures (with various graphene contents). In vitro application of a low concentration (10 μg mL-1) of the ZnFe 2O4-rGO (20 wt%) nanostructures under a short time period (∼1 min) of near-infrared (NIR) irradiation (with a laser power of 7.5 W cm-2) resulted in an excellent destruction of the prostate cancer cells, in the presence of a magnetic field (∼1 Tesla) used for localizing the... 

    Dendritic magnetite decorated by pH-responsive PEGylated starch: A smart multifunctional nanocarrier for the triggered release of anti-cancer drugs

    , Article RSC Advances ; Volume 5, Issue 60 , Jun , 2015 , Pages 48586-48595 ; 20462069 (ISSN) Pourjavadi, A ; Mazaheri Tehrani, Z ; Hosseini, S. H ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    In the present study, we designed a pH-responsive drug nanocarrier based on polyamidoamine-modified Fe3O4 nanoparticles coated by PEGylated starch-co-poly(acrylic acid). This carrier was used for the controlled release of doxorubicin as an anticancer drug model. The purpose of using the polyethylene glycol moiety is to generate a biostable nanocarrier in blood stream as it has been reported widely in the pharmaceutical literature. The use of a poly(acrylic acid) segment also provided pH-sensitivity to the polymer. Besides, the magnetic nanoparticles facilitate the cancer cell targeting with an external magnetic field located near the tumor site. This carrier was... 

    Novel method for cancer cell apoptosis by localized UV light with gold nanostructures: A theoretical investigation

    , Article Nano ; Volume 5, Issue 6 , 2010 , Pages 325-332 ; 17932920 (ISSN) Sasanpour, P ; Rashidian, B ; Rashidian, B ; Vossoughi, M ; Sharif University of Technology
    2010
    Abstract
    A novel approach for phototherapy is proposed. The proposed method is based on cell apoptosis according to halting activation of cancer cell membrane receptor by exposure to UV light pulses without any side effect. In the proposed method, gold nanoparticles are directed to cancerous cells by conjugating their surface with specific ligands. UV light is created locally adjacent to cells around the gold nanoparticles. UV light is generated due to nonlinear interaction of visible light with gold nanoparticles because of enhancement in third order nonlinear effects. For example, by using 780 nm laser, 260 nm UV will be generated around the nanoparticle because of third harmonic generation... 

    Folate-receptor-targeted delivery of doxorubicin using polyethylene glycol-functionalized gold nanoparticles

    , Article Industrial and Engineering Chemistry Research ; Volume 49, Issue 4 , 2010 , Pages 1958-1963 ; 08885885 (ISSN) Asadishad, B ; Vossoughi, M ; Alemzadeh, I ; Sharif University of Technology
    Abstract
    Doxorubicin-loaded nanocarriers were produced employing folate-modified polyethylene glycol (PEG)-functionalized gold nanoparticles for targeted delivery to positive folate-receptor cancer cells. Doxorubicin and folate were, respectively, conjugated to activated-folate and activated-PEG. The conjugates formed doxorubicin nanocarrier with an average size of 12 nm in diameter. The drug release response of functionalized gold nanoparticles was characterized by an initial rapid drug release followed by a controlled release. The doxorubicin nanocarriers showed higher cytotoxic effect on folate-receptor-positive cells (KB cells) than folatereceptor-negative cells (A549 cells). Cell viability in... 

    A novel method for segmentation of leukocyte nuclei based on color transformation

    , Article 26th National and 4th International Iranian Conference on Biomedical Engineering, ICBME 2019, 27 November 2019 through 28 November 2019 ; 2019 , Pages 213-217 ; 9781728156637 (ISBN) Amirkhani, A ; Maheri, J ; Behroozi, H ; Kolahdoozi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Acute lymphoblastic leukemia is one of the most common hematologic malignancies among children, caused by uncontrolled growth of leukocytes. Since the main hallmarks of the disease is not specific, a considerable number of patients have been being misdiagnosed. Early diagnosis of the disease is usually made by morphological investigation of leukocytes under microscope. In light of the facts that decrease in cytoplasm-to-nucleus ratio is one of the main indicators of cancerous cells, and an accurate segmentation phase will lead to extraction of representative features, segmentation step is acknowledged as being crucial in design of a computer aided diagnosis (CAD). Previous researches have... 

    Design of two Inertial-based microfluidic devices for cancer cell separation from Blood: A serpentine inertial device and an integrated inertial and magnetophoretic device

    , Article Chemical Engineering Science ; 2021 ; 00092509 (ISSN) Nasiri, R ; Shamloo, A ; Akbari, J ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The separation of cancer cells from a heterogeneous biological sample such as blood plays a vital role in cancer study and future treatments. In this paper, we designed and investigated two microfluidic devices for cancer cell separation, including a serpentine inertial device and an integrated inertial-magnetophoretic device. Firstly, numerical modeling was carried out to study the fluid flow, particles’ trajectories in the inertial device. Then the device was fabricated using soft photolithography and suspension of two types of microparticles with the size of 10 and 15 µm were injected into the microchannel separately to investigate the particles’ trajectories and focusing behavior at... 

    Comparison of logarithmic, elliptic, and conical helical spiral for isolation of circulating tumor cells based on inertial method

    , Article Physics of Fluids ; Volume 34, Issue 9 , 2022 ; 10706631 (ISSN) Shamloo, A ; Mozhdehbakhsh Mofrad, Y ; Safari, M ; Naseri, T ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    Cancer is one of the most significant causes of death in the world. It has been shown that the role of circulating tumor cells (CTCs) in the early detection of cancer is crucial. Since the number of these cancerous cells in blood is very rare, the inertial microfluidic devices are one of the best candidates for the isolation of CTCs because they result in a high throughput process. Consequently, they can process a large volume of blood in a short time. Despite extensive computational and experimental studies on inertial microfluidic platforms, the impact of the curvature has not been thoroughly investigated during separation. In this paper, the feasibility of isolation of CTCs for... 

    PH-Responsive chitosan-adorned niosome nanocarriers for co-delivery of drugs for breast cancer therapy

    , Article ACS Applied Nano Materials ; Volume 5, Issue 7 , 2022 , Pages 8811-8825 ; 25740970 (ISSN) Karimifard, S ; Rezaei, N ; Jamshidifar, E ; Moradi Falah Langeroodi, S ; Abdihaji, M ; Mansouri, A ; Hosseini, M ; Ahmadkhani, N ; Rahmati, Z ; Heydari, M ; Vosough, M ; Akbarzadeh, I ; Mostafavi, E ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Breast cancer incidence has increased in recent decades. In the present study, an optimum formulation of chitosan (CS)-adorned niosome-based nanocarriers for co-delivery of doxorubicin (DOX) and vincristine (VIN) was developed for the treatment of breast cancer to reduce drug doses and overcome multidrug resistance. The three-level Box-Behnken method was utilized to optimize the particles in terms of size, polydispersity index (PDI), entrapment efficacy (EE (%)), and percent of drug release (%). The release rate of two drugs from CS-adorned nanoparticles (DOX+VIN/Nio/CS) in acidic and physiological pH is less than uncoated niosome (DOX+VIN/Nio). In addition, acidic pH increases the release... 

    Nanomaterials for photothermal and photodynamic cancer therapy

    , Article Applied Physics Reviews ; Volume 9, Issue 1 , 2022 ; 19319401 (ISSN) Nasseri, B ; Alizadeh, E ; Bani, F ; Davaran, S ; Akbarzadeh, A ; Rabiee, N ; Bahadori, A ; Ziaei, M ; Bagherzadeh, M ; Saeb, M. R ; Mozafari, M ; Hamblin, M. R ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    In recent years, the role of optically sensitive nanomaterials has become powerful moieties in therapeutic techniques and has become particularly emphasized. Currently, by the extraordinary development of nanomaterials in different fields of medicine, they have found new applications. Phototherapy modalities, such as photothermal therapy (PTT) by toxic heat generation and photodynamic therapy (PDT) by reactive oxygen species, are known as promising phototherapeutic techniques, which can overcome the limitations of conventional protocols. Moreover, nanomaterial-based PDT and PTT match the simultaneous immune therapy and increase the immune system stimulation resulting from the denaturation of... 

    Design of two Inertial-based microfluidic devices for cancer cell separation from Blood: A serpentine inertial device and an integrated inertial and magnetophoretic device

    , Article Chemical Engineering Science ; Volume 252 , 2022 ; 00092509 (ISSN) Nasiri, R ; Shamloo, A ; Akbari, J ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The separation of cancer cells from a heterogeneous biological sample such as blood plays a vital role in cancer study and future treatments. In this paper, we designed and investigated two microfluidic devices for cancer cell separation, including a serpentine inertial device and an integrated inertial-magnetophoretic device. Firstly, numerical modeling was carried out to study the fluid flow, particles’ trajectories in the inertial device. Then the device was fabricated using soft photolithography and suspension of two types of microparticles with the size of 10 and 15 µm were injected into the microchannel separately to investigate the particles’ trajectories and focusing behavior at... 

    Polyphenols attached graphene nanosheets for high efficiency NIR mediated photodestruction of cancer cells

    , Article Materials Science and Engineering C ; Volume 33, Issue 3 , 2013 , Pages 1498-1505 ; 09284931 (ISSN) Abdolahad, M ; Janmaleki, M ; Mohajerzadeh, S ; Akhavan, O ; Abbasi, S ; Sharif University of Technology
    2013
    Abstract
    Green tea-reduced graphene oxide (GT-rGO) sheets have been exploited for high efficiency near infrared (NIR) photothermal therapy of HT29 and SW48 colon cancer cells. The biocompatibility of GT-rGO sheets was investigated by means of MTT assays. The polyphenol constituents of GT-rGO act as effective targeting ligands for the attachment of rGO to the surface of cancer cells, as confirmed by the cell granularity test in flow cytometry assays and also by scanning electron microscopy. The photo-thermal destruction of higher metastatic cancer cells (SW48) is found to be more than 20% higher than that of the lower metastatic one (HT29). The photo-destruction efficiency factor of the GT-rGO is...