Loading...
Search for: carbon
0.019 seconds

    The effect of cold-rolling prior to the inter-critical heat treatment on microstructure and mechanical properties of 4340 steel with ferrite – Martensite microstructure

    , Article Materials Science and Engineering A ; Volume 830 , 2022 ; 09215093 (ISSN) Hosseinifar, F ; Ekrami, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This study investigates the effect of cold rolling prior to inter-critical annealing on microstructure and mechanical properties of ferrite-martensite dual phase steel. Samples were heated to 850 °C for 1 h followed by oil quenching, then the steel sheet were cold rolled by 0%,10%,15% and 20% reduction in thickness. The inter-critical annealing treatment (750 °C, 120min) was performed to generate a ferrite-martensite microstructure. Microstructural studies showed that increasing the applied cold rolling, leading to increase in volume fraction of martensite and decrease in ferrite grain size. Mechanical properties of dual phase steel were measured by tensile, impact and hardness tests.... 

    Low loaded MoS2/Carbon cloth as a highly efficient electrocatalyst for hydrogen evolution reaction

    , Article International Journal of Hydrogen Energy ; Volume 47, Issue 3 , 2022 , Pages 1579-1588 ; 03603199 (ISSN) Shaker, T ; Mehdipour, H ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Active edge sites of MoS2 nanosheets exhibit promising futures for hydrogen evolution reaction (HER), comparable with remarkable performances of highly cost platinum. However, 3D structures of MoS2 suffer from a lack of high mobility and unexposed active sites which lower the electrocatalytic activity. In this study, we show that there is a balance between increasing the active sites on the one hand and managing the charge transfer to facilitate the reaction on the other hand, and achieving this balance increases the efficiency of the electrocatalyst tremendously. For this purpose, we directly attached exfoliated MoS2 nanosheets onto carbon cloth (CC) substrate as a 3D network of conductive... 

    Detailed analysis of the effects of biodiesel fraction increase on the combustion stability and characteristics of a reactivity‐ controlled compression ignition diesel‐biodiesel/natural gas engine

    , Article Energies ; Volume 15, Issue 3 , 2022 ; 19961073 (ISSN) Zarrinkolah, M. T ; Hosseini, V ; Sharif University of Technology
    MDPI  2022
    Abstract
    A single‐cylinder marine diesel engine was modified to be operated in reactivity controlled compression ignition (RCCI) combustion mode. The engine fueling system was upgraded to a common rail fuel injection system. Natural gas (NG) was used as port fuel injection, and a die-sel/sunflower methyl ester biodiesel mixture was used for direct fuel injection. The fraction of bio-diesel in the direct fuel injection was changed from 0% (B0; 0% biodiesel and 100% diesel) to 5% (B5) and 20% (B20) while keeping the total energy input into the engine constant. The objective was to understand the impacts of the increased biodiesel fraction on the combustion characteristics and stability, emissions, and... 

    Economic feasibility of CO2 capture from oxy-fuel power plants considering enhanced oil recovery revenues

    , Article Energy Procedia, 19 September 2010 through 23 September 2010 ; Volume 4 , September , 2011 , Pages 1886-1892 ; 18766102 (ISSN) Khorshidi, Z ; Soltanieh, M ; Saboohia, Y ; Arab, M ; Sharif University of Technology
    2011
    Abstract
    Considering the dramatic increase of greenhouse gases concentration in the atmosphere, especially carbon dioxide, reduction of these gases seems necessary to combat global warming. Fossil fuel power plants are one of the main sources of CO2 emission and several methods are under development to capture CO2 from power plants. In this paper, CO2 capture from a natural gas fired steam cycle power plant using oxyfuel combustion technology is studied. Oxy-fuel combustion is an interesting option since CO2 concentration in the flue gas is highly increased. The Integrated Environmental Control Model (IECM) developed by Carnegie Mellon University (USA) is used to evaluate the effect of this capture... 

    Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: Enhancement of di-rhamnolipid proportion using gamma irradiation

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 81, Issue 2 , 2010 , Pages 397-405 ; 09277765 (ISSN) Lotfabad, T. B ; Abassi, H ; Ahmadkhaniha, R ; Roostaazad, R ; Masoomi, F ; Zahiri, H. S ; Ahmadian, G ; Vali, H ; Noghabi, K. A ; Sharif University of Technology
    2010
    Abstract
    We previously reported that MR01, an indigenous strain of Pseudomonas aeruginosa, was able to produce a rhamnolipid-type biosurfactant. Here, we attempted to define the structural properties of this natural product. The analysis of the extracted biosurfactant by thin-layer chromatography (TLC) revealed the presence of two compounds corresponding to those of authentic mono- and di-rhamnolipid. The identity of two structurally distinguished rhamnolipids was confirmed by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. Liquid chromatography/mass spectrometry (LC/MS) of extracted biosurfactant revealed up to seventeen different rhamnolipid congeners. Further quantification showed... 

    Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes: pre-clinical and pathological studies in animal models

    , Article Journal of Materials Science: Materials in Medicine ; Volume 28, Issue 5 , 2017 , 73 ; 09574530 (ISSN) Mahmoudi, N ; Eslahi, N ; Mehdipour, A ; Mohammadi, M ; Akbari, M ; Samadikuchaksaraei, A ; Simchi, A ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    Abstract: In recent years, temporary skin grafts (TSG) based on natural biopolymers modified with carbon nanostructures have received considerable attention for wound healing. Developments are required to improve physico-mechanical properties of these materials to match to natural skins. Additionally, in-deep pre-clinical examinations are necessary to ensure biological performance and toxicity effect in vivo. In the present work, we show superior acute-wound healing effect of graphene oxide nanosheets embedded in ultrafine biopolymer fibers (60 nm) on adult male rats. Nano-fibrous chitosan-based skin grafts crosslinked by Genepin with physico-mechanical properties close to natural skins were... 

    Novel one-pot synthesis of functionalized quinolines from isocyanides, aniline, and acetylene dicarboxylate via cu-catalyzed intramolecular C─H activation reactions

    , Article Journal of Heterocyclic Chemistry ; Volume 56, Issue 4 , 2019 , Pages 1254-1259 ; 0022152X (ISSN) Nematpour, M ; Rezaee, E ; Jahani, M ; Tabatabai, S. A ; Sharif University of Technology
    HeteroCorporation  2019
    Abstract
    The one-pot synthesis of a novel class of substituted quinoline derivatives with good yields is achieved via the Cu-catalyzed intramolecular C─H activation reaction between isocyanides, aniline, and acetylene dicarboxylate in MeCN at room temperature. The existence of one-pot conditions, availability of a starting material-catalyst, the absence of column chromatography, and a high yield of products are among the advantages of this method. The structures are confirmed spectroscopically (1H NMR and 13C NMR, IR, and EI-MS) and through elemental analyses  

    Magnetic, thermally stable, and superhydrophobic polyurethane sponge: A high efficient adsorbent for separation of the marine oil spill pollution

    , Article Chemosphere ; Volume 287 , 2022 ; 00456535 (ISSN) Habibi, N ; Pourjavadi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Herein, we demonstrated a facile method for the fabrication of magnetic and superhydrophobic polyurethane sponge with water contact angle of 159° as an adsorbent for cleanup the marine oil spill pollution. For this aim, a polyurethane sponge was coated with carbon black (CB), hexagonal boron nitride (h-BN)@Fe3O4, and acrylic resin and then characterized by different techniques. Owing to the chemical and thermal stability of h-BN and CB, the modified sponge was stable under corrosive conditions (pH = 1–14 and salt solutions) and at different temperatures (−12 °C–105 °C). In addition to common oils and organic solvents, we also used the real spilled oils containing monoaromatics and... 

    Green products from herbal medicine wastes by subcritical water treatment

    , Article Journal of Hazardous Materials ; Volume 424 , 2022 ; 03043894 (ISSN) Jouyandeh, M ; Tavakoli, O ; Sarkhanpour, R ; Sajadi, S. M ; Zarrintaj, P ; Rabiee, N ; Akhavan, O ; Lima, E. C ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Herbal medicine wastes (HMWs) are byproducts of medicine factories, which are mainly landfilled for their environmental problems. Only bearing in mind the contamination and concerns caused by the COVID-19 pandemic and environmental emissions, the worth of herbal medicine wastes management and conversion to green products can be understood. In this work, subcritical water treatment was carried out batch-wise in a stainless tube reactor in the pressure range of 0.792–30.0 MPa, varying the temperature (127–327 °C) and time (1–60 min) of extraction. This resulted in new and green material sources, including organic acids, amino acids, and sugars. Amazingly, at very low extraction times (below 5... 

    Simultaneous Removal of Nitrogen, Phosphorus, and Organic Matter in a Biofilm Reactor Using Novel CBMC Carriers

    , Ph.D. Dissertation Sharif University of Technology Massoompour, Alireza (Author) ; Raie, Mohammad (Supervisor) ; Borghei, Mehdi (Supervisor)
    Abstract
    This study aims to enhance biological nitrogen and phosphorus removal performance by the innovative carbon-based moving carriers (CBMC) and reveals the role of carrier characteristics on the nutrient removal efficiency. In this research, the new carriers with the advantages of both MBBR hybrid system and physicochemical properties of activated carbon were produced based on the recycling of waste materials for the first time via a chemical-thermal process. The analysis revealed that the specific surface area of the new carrier with a rough and highly porous structure was approximately 11.4 times that of the conventional MBBR carrier. This feature plus the other physicochemical properties of... 

    Simulation, Integration, Optimization of Conversion of Natural Gas to Olefins by Methanol Production Process with ASPEN PLUS and GAMS Softwares

    , M.Sc. Thesis Sharif University of Technology Foroughi Doust, Mohsen (Author) ; Rashtchian, Davoud (Supervisor) ; Sharifzadeh, Mahdi (Supervisor)
    Abstract
    Considering the supply and demand market of natural gas, methanol, propylene and ethylene and the propylene value chain, it is expected that the design of the propylene production process from methanol produced from natural gas and its implementation in Iran country can significantly flourish the production of polypropylene, acrylonitrile and Etc. On the other hand, with the industrialization of this process, the uncontrolled export of methanol from Iran to countries such as China and the devaluation of methanol will be prevented. In this report, the process of producing synthetic gas from natural gas using autothermal reactor and heat exchange reforming, separation and storage of carbon... 

    Behavior of Concrete Slabs Reinforced with FRP Bars, Design and Analysis

    , M.Sc. Thesis Sharif University of Technology Adimi, Alireza (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    Despite extensive studies on the behavior of reinforced concrete slabs, especially those reinforced with steel rebars, no comprehensive studies have been conducted on the behavior of concrete slabs reinforced with FRP rebars. Therefore, there are some ambiguities regarding the tensile and compressive behavior of these rebars in the load-bearing capacity of reinforced concrete slabs (depending on their amount in the slab and their combination with steel rebars). Hence, in this study, in order to ensure the accuracy of numerical simulations, the numerical 3D simulation of a one-way concrete slab reinforced with tensile FRP rebars was performed using the finite element Abaqus software.... 

    Scaling, multifractality, and long-range correlations in well log data of large-scale porous media

    , Article Physica A: Statistical Mechanics and its Applications ; Vol. 390, issue. 11 , June , 2011 , p. 2096-2111 ; ISSN: 03784371 Dashtian, H ; Jafari, G. R ; Sahimi, M ; Masihi, M ; Sharif University of Technology
    Abstract
    Three distinct methods, namely, the spectral density, the multifractal random walk approach, and the multifractal detrended fluctuation analysis are utilized to study the properties of four distinct types of well logs from three oil and gas fields, namely, the natural gamma ray emission, neutron porosity, bulk density, and the sonic transient time logs. Such well logs have never been analyzed by the methods that we utilize in the present study. The results indicate that the well logs exhibit multifractal characteristics, and the estimated Hurst exponents by the three methods are close to each other. Using multifractal detrended fluctuation analysis and the shuffled and surrogated data, we... 

    Simultaneous separation of H2S and CO2 from CH4 by a high silica CHA-type zeolite membrane

    , Article Journal of Membrane Science ; Vol. 470, issue , 2014 , pp. 159-165 ; ISSN: 03767388 Maghsoudi, H ; Soltanieh, M ; Sharif University of Technology
    Abstract
    A high silica CHA-type membrane was synthesized by the in-situ crystallization method on a disk like α-alumina porous support to separate both acid (H2S, CO2) gases from methane. The membrane showed a permeance of 3.39×10-8mol/m2sPa for pure CO2with CO2/CH4 ideal selectivity of 21.6 at 303K and 100kPa pressure difference across the membrane. The membrane was also tested with N2 and O2 pure gases indicating a small O2/N2 selectivity of 1.2-1.4, which shows that this type of membrane is not suitable for O2/N2 separation. The membrane performance was also analyzed by binary (CO2-CH4) and ternary (H2S-CO2-CH4) gas mixtures, with compositions near the real sour natural gas (CO2: 2.13mol%, H2S:... 

    Improvement in CO2/H2 separation by fabrication of poly(ether-b-amide6)/glycerol triacetate gel membranes

    , Article Journal of Membrane Science ; Vol. 469, issue , 2014 , pp. 43-58 ; ISSN: 03767388 Rabiee, H ; Soltanieh, M ; Mousavi, S. A ; Ghadimi, A ; Sharif University of Technology
    Abstract
    The purpose of this study is to investigate separation performance of poly(ether-b-amide6) (Pebax1657)/glycerol triacetate (GTA) gel membranes for CO2 removal from H2, N2 and CH4. GTA as a low molecular weight and highly CO2-phill compound was added to membrane structure at various weight fractions, 20%, 40%, 60% and 80% of Pebax, to fabricate a new high solubility selective membrane with improved performance. Permeation of pure gases was studied at different temperatures from 25 to 65°C and pressures from 4 to 24bar and ideal selectivities were calculated. Results indicated enhancement in permeation for all tested gases. For example, at a pressure of 4bar and a temperature of 25°C, membrane... 

    Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations

    , Article Environmental Science and Pollution Research ; Volume 20, Issue 7 , 2013 , Pages 4777-4789 ; 09441344 (ISSN) Arhami, M ; Kamali, N ; Rajabi, M. M ; Sharif University of Technology
    2013
    Abstract
    Recent progress in developing artificial neural network (ANN) metamodels has paved the way for reliable use of these models in the prediction of air pollutant concentrations in urban atmosphere. However, improvement of prediction performance, proper selection of input parameters and model architecture, and quantification of model uncertainties remain key challenges to their practical use. This study has three main objectives: to select an ensemble of input parameters for ANN metamodels consisting of meteorological variables that are predictable by conventional weather forecast models and variables that properly describe the complex nature of pollutant source conditions in a major city, to... 

    Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01

    , Article World Journal of Microbiology and Biotechnology ; Volume 29, Issue 6 , June , 2013 , Pages 1039-1047 ; 09593993 (ISSN) Partovi, M ; Lotfabad, T. B ; Roostaazad, R ; Bahmaei, M ; Tayyebi, S ; Sharif University of Technology
    2013
    Abstract
    Biosurfactant production through a fermentation process involving the biodegradation of soybean oil refining wastes was studied. Pseudomonas aeruginosa MR01 was able to produce extracellular biosurfactant when it was cultured in three soybean oil refinement wastes; acid oil, deodorizer distillate and soapstock, at different carbon to nitrogen ratios. Subsequent fermentation kinetics in the three types of waste culture were also investigated and compared with kinetic behavior in soybean oil medium. Biodegradation of wastes, biosurfactant production, biomass growth, nitrate consumption and the number of colony forming units were detected in four proposed media, at specified time intervals.... 

    Ionic liquid/graphene oxide as a nanocomposite for improving the direct electrochemistry and electrocatalytic activity of glucose oxidase

    , Article Journal of Solid State Electrochemistry ; Volume 17, Issue 1 , January , 2013 , Pages 183-189 ; 14328488 (ISSN) Tasviri, M ; Ghasemi, S ; Ghourchian, H ; Gholami, M. R ; Sharif University of Technology
    2013
    Abstract
    By combination of 1-ethyl-3-methyl immidazolium ethyl sulfate as a typical room temperature ionic liquid (IL) and graphene oxide (GO) nanosheets, a nanocomposite was introduced for improving the direct electrochemistry and electrocatalytic activity of glucose oxidase (GOx). The enzyme on the IL-GO-modified glassy carbon electrode exhibited a quasireversible cyclic voltammogram corresponding to the flavine adenine dinucleotide/FADH2 redox prosthetic group of GOx. At the scan rate of 100 mV s-1, the enzyme showed a peak-to-peak potential separation of 82 mV and the formal potential of -463 mV (vs Ag/AgCl in 0.1 M phosphate buffer solution, pH 7.0). The kinetic parameters of the charge transfer... 

    An experimental study on the applicability of water-alternating-co 2 injection in the secondary and tertiary recovery in one iranian reservoir

    , Article Petroleum Science and Technology ; Volume 30, Issue 24 , 2012 , Pages 2571-2581 ; 10916466 (ISSN) Motealleh, M ; Kharrat, R ; Gandomkar, A ; Khanamiri, H ; Nematzadeh, M ; Ghazanfari, M ; Sharif University of Technology
    2012
    Abstract
    The objective of this study was to experimentally investigate the performance of water-alternating gas (WAG) injection in one of Iran's oil reservoirs that encountered a severe pressure drop in recent years. Because one of the most appropriate studies to evaluate the reservoir occurs generally on rock cores taken from the reservoir, core samples drilled out of the reservoir's rock matrix were used for alternating injection of water and gas. In the experiments, the fluid system consisted of reservoir dead oil, live oil, Co 2, and synthetic brine; the porous media were a number of carbonate cores chosen from the oilfield from which the oil samples had been taken. All coreflood experiments were... 

    A lupane triterpenoid and other constituents of Salvia eremophila

    , Article Natural Product Research ; Volume 26, Issue 21 , 2012 , Pages 2045-2049 ; 14786419 (ISSN) Farimani, M. M ; Moghaddam, F. M ; Esmaeili, M. A ; Amin, G ; Sharif University of Technology
    2012
    Abstract
    Phytochemical investigation of the aerial parts of Salvia eremophila led to the isolation of a lupane triterpenoid, 3β, 20-dihydroxylupane-28-oic acid (1), together with eight other compounds, comprising three diterpene, two triterpene, two flavonoids and a steroidal glucoside. Their structures were elucidated by interpretation of their one-dimensional and two-dimensional NMR spectra and completed by the analysis of the HRESIMS data. Compounds 1, 2-4 and 8 were evaluated for their cytotoxicities against five human tumour cell lines. Compounds 1 and 3 hold a good potential for use in future studies due to their anti-cancer properties