Loading...
Search for: carbonates
0.019 seconds
Total 2074 records

    Mechanical Behavior Analysis of Carbon Nanotube-Based Polymer Composites using Multiscale Modeling

    , Ph.D. Dissertation Sharif University of Technology Montazeri Hedesh , Abbas (Author) ; Naghdabadi, Reza (Supervisor) ; Rafii Tabar, Hashem (Supervisor) ; Bagheri, Reza (Supervisor)
    Abstract
    In this project, two multiscale modeling procedures have been implemented to study the mechanical behavior of SWCNT/polymer composites. First, a new three-phase molecular structural mechanics/ finite element (MSM/FE) multiscale model has been introduced which consists of three components, i.e. a carbon nanotube, an interphase layer and outer polymer matrix. The nanotube is modeled at the atomistic scale using MSM, whereas the interphase layer and polymer matrix are analyzed by the FE method. Using this model, we have investigated the macroscopic material properties of nanocomposite with and without considering the interphase and compared the results with molecular dynamics (MD) simulations.... 

    Bioregeneration of Granular activated carbon (GAC) contaminated with phenolic compounds

    , M.Sc. Thesis Sharif University of Technology Ahangar, Ata Ollah (Author) ; Vossoughi, Manouchehr (Supervisor) ; Borghei, Mehdi (Supervisor)
    Abstract
    This project surveys bioregeneration of granular activated carbons contaminated with phenolic compounds. To carry out this survey, the procedure of phenol absorption on the surface of activated carbon was studied and their adsorption isotherms were calculated. In the first step, newly activated carbon was contaminated with phenol solution and optimum amount of carbon in phenol elimination was 0.5g. Then, the effect of time contact on phenol elimination was studied and eventually 1 hour of time contact was determined as the equilibrium time of phenol adsorption. In the second step, kinetics of adsorption of phenol and different stages of adsorption were studied. The results of this study... 

    Synthesis of a Nanocatalyst for Selective Hydrogenation of Acetylene in Presence of Ethylene

    , M.Sc. Thesis Sharif University of Technology Bazzazzadegan, Hadi (Author) ; Kazemeini, Mohammad (Supervisor) ; Rashidi, Ali Morad (Supervisor)
    Abstract
    In this research a novel palladium nanocatalyst was synthesized over single-wall carbon nanotube (SWNT) support and then applied in the selective hydrogenation of acetylene in an ethylene rich-flow stream. This nanocatalyst displayed a very promising selectivity toward ethylene production upon rising of the temperature, as well as suppressing oligomer formation during acetylene hydrogenation. It was rationalized that the overwhelming governing mechanism for the acetylene hydrogenation over the 0.48 wt% Pd/SWNT was the hydrogen transfer. Furthermore, new operating conditions for selective hydrogenation of acetylene in ethylene rich-flow were introduced through which the selective... 

    Surface Modification of Polysulfone Membrane by Plasma Treatment for CO2/CH4 Separation

    , M.Sc. Thesis Sharif University of Technology Modarresi, Siamak (Author) ; Soltanieh, Mohammad (Supervisor)
    Abstract
    Low frequency (LF) O2 plasma was used to modify the surface of polysulfone (PSF) gas separation membranes. The effect of treatment time and plasma power input on the membranes was also investigated. Pure CO2 and CH4 gas permeation measurements were performed before and after plasma treatment. The results showed the increase of permeability of the treated membranes due to surface ablation and surface polarization. However, the CO2/CH4 permselectivity of the treated membranes varied from 7.7 to 45.3 depending on the treatment conditions. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy determined the introduction of oxygen containing polar groups on the surface... 

    Design and Analysis of Nano Ball Bearing

    , M.Sc. Thesis Sharif University of Technology Naseiri Sarvi, Masuod (Author) ; Ahmadian, Mohammad Taghi (Supervisor)
    Abstract
    Nowadays, science of nano technology has been growing quickly in the past decade. Scientists implemented this technology in bioengineering, electronics and medicine extensively. Nano scale engineering is one of the interests of researchers, nano bearing as a nano scale structure and as an important part of nano machining plays an important role in micro and nano devices. The role of nano bearing is to decrease energy dissipation and increase the efficiency of nano machines. The main purpose of this study is to design and analyze an optimized nano ball bearing. In this regard, a new spherical super element is designed and presented. This super element is implemented in simulating the... 

    Simulation of Biomanipulation Using Molecular Dynamics

    , M.Sc. Thesis Sharif University of Technology Mahjour Firouzi, Mohammad Ali (Author) ; Meghdari, Ali (Supervisor) ; Nejat Pishkenari, Hossein (Supervisor)
    Abstract
    This thesis is devoted to the simulation of biomolecules manipulation using Molecular dynamics (MD). In order to investigate the manipulation behavior, we have used the Ubiquitin as biomolecule, a single-walled carbon nanotube (SWCNT) as manipulation probe, a graphene sample as substrate. Along this line, a lot of simulations are conducted to study the effects of different conditions on the success of manipulation process. These conditions include tip diameter, vertical gap between tip and substrate, initial orientation of protein, and the simulation environment (dry or wet). The results demonstrate that tips with bigger diameters and smaller distances with respect to the substrate increase... 

    Preparation of Nanofluid by Using Hybrid Nanostructures and Investigation of Thermal and Rheological Properties and Using it in the Petroleum Fluids

    , M.Sc. Thesis Sharif University of Technology Baghbanzadeh, Mohammad Ali (Author) ; Rashtchian , Davood (Supervisor) ; Rashidi, Alimorad (Supervisor) ; Lotfi, Roghayeh (Co-Advisor)
    Abstract
    In this study, thermal and rheological properties of nanofluids of water/carbon nanotubes, water/spherical silica nanoparticles and water/hybrid nanoparticles (hybrid of carbon nanotubes and spherical silica nanoparticles) have been investigated. To do so, carbon nanotubes have been synthesized by CCVD process and spherical silica nanoparticles and hybrid nanoparticles by wet chemical method. After synthesis of nanomaterials, nanofluids have been prepared by using SDBS as a dispersant with the concentration of 1.5 times of concentration of nanomaterials and then thermal conductivity, kinematic viscosity, dynamic viscosity and density of nanofluids have been investigated. As the results show,... 

    Thermal Degradation and Kinetic Analysis of Polyethylene/Carbon Nanotube Nanocomposites Prepared via in Situ Polymerization

    , M.Sc. Thesis Sharif University of Technology Shariati, Jafar (Author) ; Ramazani Saadatabadi, Ahmad (Supervisor) ; Khorasheh, Farhad (Supervisor)
    Abstract
    In the preparation of nanocomposites, the multi-walled carbon nanotubes (MWCNTs) functionalized by hydroxyl groups were used. Subsequently, the polyethylene/multi-walled carbon nanotube (PE/MWCNTs) nanocomposites were prepared via in situ polymerization technique. In this study, effect of MWCNTs on the thermal degradation of these PE/MWCNT nanocomposites was investigated; the thermal degradations of pure PE and PE nanocomposites with different concentrations of nanotubes (0.5, 1.5, 3.5 wt %) have been studied by using thermal gravimetric analysis (TGA). Samples were heated to 700˚C at different heating rates (5, 10, 15, and 20˚C/min). TGA was used to investigate the effect of the MWCNTs on... 

    Neutral Spin Collective Mode in Carbon Nanotubes

    , M.Sc. Thesis Sharif University of Technology Sayyad, Sharareh (Author) ; Jafari, Akbar (Supervisor)
    Abstract
    In 2002 Baskaran and Jafari published an article that was about a spin-1 collective mode. Similarity between carbon nanotubes and graphene was a motivation for working on this project, in order to find another spin mode by considering random phase approximation as a simple way of finding collective motion of a physical systems. Moreover rolling graphene sheet induce diffrent physical properties as a result of chiral axis . In this project we focus only on achiral nanotubes and at last find two collective modes in this structures  

    Investigation Properties of Polypropylene/Carbon Nanotube Nanocomposites Prepared via in Situ Polymerization Using Bi-Supported Ziegler Natta Catalyst

    , M.Sc. Thesis Sharif University of Technology Jafari Esfad, Narjes (Author) ; Ramezani Saadatabadi, Ahmad (Supervisor)
    Abstract
    In this research polypropylene/carbon nanotube nano composites were prepared via in situ polymerization using Bi-supported Ziegler-Natta catalytic systems. Magnesium etoxide and Multi wall carbon nanotubes(MWCNT) functionalized by hydroxyl groups were used as supports of catalyst. TiCl4 and TiBA were used as catalyst and co catalyst respectively. After defining the polymerization optimum conditions and considering its parameters constant, nano composites with different carbon nanotube contents were produced by changing the polymerization time. Scanning Electron Microscopy (SEM) images certified very good dispersion of MWCNTs throughout polypropylene matrix. The thermal properties behavior of... 

    Instability Analysis of Carbon Nanotubes and Graphitic Shells Conveying Fluid

    , M.Sc. Thesis Sharif University of Technology Ramazani Ali-Akbari, Hossein (Author) ; Haddadpour, Hassan (Supervisor)
    Abstract
    In this research, the instability analysis of single-walled carbon nanotubes (SWCNTs) and graphitic shells conveying fluid is investigated based on the molecular structural mechanics. Using the reduced order models for fluid and structure, the dynamic behavior of carbon nanotubes (CNTs) conveying fluid is accurately modeled via a few number of lowest flow modes and natural frequencies and mode shapes of CNTs structure. In addition, the boundary element method (BEM) is used to model the potential flow. The molecular mechanics (MM) model is applied to modal analysis and driving the natural frequencies and mode shapes of SWCNTs. The effect of chirality on flow-induced instability is taken into... 

    Preparation and Characterization of Polyamide6/Polypropylene/Carbon nanotubes and Carbon Black Nanocomposites

    , M.Sc. Thesis Sharif University of Technology Haghighatgou Roudsari, Hoda (Author) ; Shojaei, Akbar (Supervisor) ; Forounchi, Massoud (Supervisor)
    Abstract
    Multiwall carbon nanotubes (MWCNTs) and carbon black (CB) reinforced polypropylene/polyamide6 (75/25) nanocomposites were prepared by melt compounding approach. Polypropylene grafted with maleic anhydride (PP-g-MA) was used as compatibilizer. Different amount of fillers were introduced into the polymer blends. The morphology, mechanical, rheological properties and crystallization behavior of the composites were investigated. Scanning electron microscopy was employed to study the microstructure. Differential scanning calorimetry (DSC) results showed that the addition of MWNT or CB to PP/PA6 blend resultes increase in crystallinity degree of PA6. The fillers were found to be located... 

    , M.Sc. Thesis Sharif University of Technology Hadizadeh Harandi, Maryam (Author) ; Shojaei, Akbar (Supervisor) ; Bagheri, Reza (Supervisor)
    Abstract
    Taghizadeh Manzari, M. (MehrdadThe main goals of this project are studding the effect of carbon nanotube on the properties of PA6/PA66 matrix and miscibility of PA6/PA66 blend. So PA6/PA66/CNT nanocomposites were compounded by melt mixing method and samples were prepared by injection molding. Due to study miscibility of PA6 and PA66, we used DMTA test and found that PA6 and PA66 are miscible because of existing one pick on DMTA graph. Also DSC test results confirmed that PA6 and PA66 are miscible. Moreover, according to DMTA results, modulus will be rose by increasing CNT content. Mechanical test showed same results in this case. Adding 1%CNT to matrix caused 10% improvement in modulus and... 

    Evaluation of Material Properties of Short Carbon Nanotube-Based Composites Using Nonlocal ElasticityTheory

    , M.Sc. Thesis Sharif University of Technology Amelirad, Omid (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    Classical theory of elasticity, which is founded upon results of mechanical experiments on the large scale materials, has reasonable results in predicting mechanical properties. The basic idea in this theory is that stress at a point of the material is only a function of the local strain and it is independent of the nonlocal strains. Therefore, the size of the material does not play any role in analyzing mechanical behavior of materials using this theory. However, results from experiments and atomic simulations have shown that in nano scale materials, such as carbon nanotubes (CNTs) and their composites, mechanical properties are strongly dependent on the size parameters of these materials.... 

    Hot Workability of a Free-cutting Steel with Severe Sulfur Segregation During Continuous Casting

    , M.Sc. Thesis Sharif University of Technology Naghdy, Soroosh (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Splitting in ingot cast structures and transverse cracks in continuous cast structures are the main problems of hot rolling of low carbon resulfurized free-cutting (LCRF) steels. Presence of high volume fraction of manganese sulfide inclusions in cast structure increases the risk of alligatoring in hot rolling. Because of high sulfur content of these steels and probability of formation of low melting point phases, minimum level of manganese and maximum level of copper and tin is necessary. Morphology of manganese sulfide is another important factor in hot forming of these steels, which can be controlled by level of deoxidation in steel making. In fact, MnS2 is present in fully killed... 

    Experimental Studies for Construction of a Microbial Fuel Cell (MFC) in Continuous Flow Mode

    , M.Sc. Thesis Sharif University of Technology Sadeghi Haskoo, Mohammad Amin (Author) ; Vossoughi, Manoochehr (Supervisor) ; Aalemzadeh, Iran (Supervisor)
    Abstract
    In this research performance of microbial fuel cells (MFCs) in continuous flow mode was studied. Different anodic chambers were tested and it was found that granular activated carbons (GACs) produced the highest power density (1228 mW/m3) in comparison with multiple anodes (731 mW/m3), single anode (294 mW/m3) and polymeric packings (40 mW/m3). It was also shown that in a plug-anodic chamber (PAC) the power output is reduced by reducing agitation of anodic volume. Adding more GACs to anodic chamber results in power increase, however by increasing occupied volume from 80% to 100% the power increase was negligible in result of cathodic reactions limitations. Feed flowrate was increased from... 

    Investigation of Mechanical Behavior of Short Carbon Nanotubes Reinforced Metal Matrix Nanocomposites Using Surface Elasticity Theory

    , M.Sc. Thesis Sharif University of Technology Saboori, Mohammad Ali (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    In recent years, carbon nanotubes have been the focus of considerable researches. Numerous investigators have reported remarkable physical and mechanical properties for this new form of carbon. In particular, the exceptional mechanical properties of carbon nanotubes, combined with their low density, offer scope for the development of nanotube reinforced composite materials. The potential for nanocomposites reinforced with carbon tubes having extraordinary specific stiffness and strength represent tremendous opportunity for application in this century and recently metal matrix type of these nanocomposites, due to their advantages, have received great attention. Classical theories of... 

    An Investigation Into the Energy Absorption of Severely Plastic Deformed Low Carbon Steel

    , M.Sc. Thesis Sharif University of Technology Mirzaei, Hassan (Author) ; Kazeminezhad, Mohsen (Supervisor)
    Abstract
    So far many investigations was performed in the field of energy absorption of mono and bi-layer sheets. As respects, severe plastic deformation process causes grain refinement and strength increase, there is not any study in feild of energy absorption of the severely plastic deformed sheets. The aim of this project was to investigate energy absorption of constrain groove pressed sheets by using different methods such as tensile test and wedge tear test. In this project, low carbon steel was processed by constrain groove press and mechanical properties of sheets was investigated, by using tensile test. It has been observed that ductility reduced and strength increased with increasing the... 

    Separation of CO2 from CO2-air Mixture Using ILM Membrane Containing TEG-DEA

    , M.Sc. Thesis Sharif University of Technology Ahadi, Hossein (Author) ; Bastani, Dariush (Supervisor)
    Abstract
    CO2 separation from air was investigated in this work. An immobilized liquid membrane (ILM) which contains triethylene glycol (TEG) and diethanolamine (DEA) was used for this purpose. In this kind of membranes a liquid, which improves permeability of gas species through the membrane, fills the pores of a polymeric membrane as support. Because of low vapor pressure of solution, liquid loss was negligible. Transport of CO2 was facilitated due to reversible chemical reaction between CO2 and amine solution. A polyvinylidene fluoride (PVDF) membrane was chosen to have chemical resistance against the solution and prevent destruction of polymer by solution. A flat sheet and hydrophilic PVDF was... 

    Dynamic Simulation of Molten Carbonate Fuel Cell

    , M.Sc. Thesis Sharif University of Technology Golzari, Alireza (Author) ; Pishvaie, Mahmoud Reza (Supervisor)
    Abstract
    In this work, a model was presented for an MCFC fuel cell with internal reforming and combustion chamber. The model consists of mass and heat transfer equations beside the chemical and electrochemical reaction rate equations. Velocity distribution due to reactions and temperature distribution along the cell is considered. The model has been simulated in steady state form using finite difference method in MATLAB package environment accompanied by the analysis of the dynamic behavior of cell using method of lines in Simulink environment. Simulation results have been validated with experimental data extracted from literature. The last part of the work concerns with sensitivity analysis of some...