Loading...
Search for: cobalt-compounds
0.006 seconds

    Self-encapsulation of single-texture CoSi2 nanolayer by TaSi2

    , Article Thin Solid Films ; Volume 516, Issue 18 , 31 July , 2008 , Pages 6008-6012 ; 00406090 (ISSN) Akhavan, O ; Azimirad, R ; Moshfegh, A. Z ; Sharif University of Technology
    2008
    Abstract
    In this work, we have studied single-texture formation of CoSi2 layer in heat-treated Co/Ta0.7W0.3/Si(100) structure. Moreover, self-encapsulation process of the CoSi2 layer and surface roughness of the encapsulated layer, as a contact layer, has been examined. A direct current magnetron co-sputtering technique was employed to deposit a 10 nm Ta0.7W0.3 alloy intermediate layer. After growth of the layer on the Si substrate, a 25 nm Co layer was deposited using thermal evaporation method. Post-annealing process of the films was treated in an N2(80%) + H2(20%) ambient in a temperature range from 400 to 1000 °C for 60 min. X-ray diffraction analysis showed that a single-texture CoSi2 layer with... 

    Optical and electrical properties of the copper-carbon nanocomposites

    , Article Nanophotonics II, Strasbourg, 7 April 2008 through 9 April 2008 ; Volume 6988 , 2008 ; 0277786X (ISSN); 9780819471864 (ISBN) Ghodselahi, T ; Vesaghi, M. A ; Shafiekhani, A ; Ahmadi, M ; Sharif University of Technology
    2008
    Abstract
    We prepared copper-carbon nanocomposite films by co-deposition of RF-Sputtering and RF-PECVD methods at room temperature. These films contain different copper concentration and different size of copper nanoparticles. The copper content of these films was obtained from Rutherford Back Scattering (RBS) analyze. We studied electrical resistivity of samples versus copper content. A metal-nonmetal transition was observed by decreasing of copper content in these films. The electrical conductivity of dielectric and metallic samples was explained by tunneling and percolation models respectively. In the percolation threshold conduction results from two mechanisms: percolation and tunneling. In the... 

    Crystallinity of CoSi2 nanolayer grown by refractory metal interlayer and cap layer methods

    , Article Journal of Physics: Conference Series ; Volume 100, Issue PART 4 , 2008 ; 17426588 (ISSN) Akhavan, O ; Moshfegh, A. Z ; Sharif University of Technology
    Institute of Physics Publishing  2008
    Abstract
    Epitaxial formation of CoSi2 nanolayer by solid state reaction of Co-Si in refractory metal intermediate-layer and cap-layer systems was investigated. Thin films of Ta and W, as the refractory metal intermediate or cap layers of the Co film, were deposited on Si(100) substrate and then heat-treated. The both interlayers resulted in formation of epitaxial CoSi 2 with (100) crystallographic orientation at 900°C. However, in the Ta intermediated system, the grown CoSi2 layer was thermally unstable at 1000°C, unlike the W system with a stable silicide layer. We found that use of W cap-layer cannot yield an epitaxial CoSi2 phase. But, a Ta cap-layer resulted in formation of epitaxial CoSi2(100)... 

    Synthesis, characterization, spectroscopic and thermodynamic studies of charge transfer interaction of a new water-soluble cobalt(II) Schiff base complex with imidazole derivatives

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 69, Issue 2 , 2008 , Pages 624-628 ; 13861425 (ISSN) Boghaei, D. M ; Askarizadeh, E ; Bezaatpour, A ; Sharif University of Technology
    2008
    Abstract
    The water-soluble cobalt(II) tetradentate Schiff base complex [Co(II)L](ClO4)2, L: (N,N′-bis{5-[(triphenylphosphonium)-methyl]salicylidine}-o-phenylenediamineperchlorate has been synthesized and characterized. This complex forms charge transfer (CT) complexes with imidazole and 1-methylimidazole. The formation constant, molar absorptivity (ε′), and thermodynamic parameters for charge transfer complexes formation of cobalt(II) Schiff base complexes with imidazole derivatives were determined by using UV-vis spectrophotometric method in aqueous solutions at constant ionic strength (I = 0.2 mol dm-3 KNO3) at pH 6.0 and various temperatures between 292 and 315 K. © 2007 Elsevier B.V. All rights... 

    Co-evolutionary reliability-oriented high-level synthesis

    , Article 2008 IEEE International Symposium on Circuits and Systems, ISCAS 2008, Seattle, WA, 18 May 2008 through 21 May 2008 ; 2008 , Pages 2026-2029 ; 02714310 (ISSN) ; 9781424416844 (ISBN) Safari, S ; Aminzadeh, S ; Sharif University of Technology
    2008
    Abstract
    The main contribution of this paper is utilizing bio-inspired evolutionary algorithm for reliability oriented high level synthesis. In this paper genetic algorithm is used to schedule a data-flow graph considering latency and resource allocation considering resource constraints and area overhead. Then a co-evolutionary strategy merges the results of these solutions to find the RT level design of the circuit which satisfies both performance and area constraints. To satisfy the user-defined reliability, another genetic algorithm is developed to insert some hardware redundancies to the resulted data-path. Experimental results show using the proposed approach results in an acceptable reliability... 

    Structure transition of single-texture CoSi 2 nanolayer grown by refractory-interlayer-mediated epitaxy method

    , Article Applied Surface Science ; Volume 253, Issue 5 , 2006 , Pages 2953-2957 ; 01694332 (ISSN) Akhavan, O ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier  2006
    Abstract
    In this investigation, the crystalline structure of a nanometric CoSi 2 layer, formed in heat treated Co/W x Ta (1-x) /Si(1 0 0) systems, has been studied by XRD analysis. Careful measurements of the diffraction intensities revealed that temporary formation of a metastable diamond cubic structure of CoSi 2 phase, rather than its usual CaF 2 structure, was occurred. It has been shown that formation of this metastable structure depends on the kind of the applied interlayer in addition to the annealing temperature. Among the studied systems with x = 0, 0.25, 0.5, 0.75 and 1, the second and the last systems resulted in growing a (1 0 0) single-texture CoSi 2 layer with the preferred usual CaF 2... 

    Copper oxide@cobalt oxide core-shell nanostructure, as an efficient binder-free anode for lithium-ion batteries

    , Article Journal of Physics D: Applied Physics ; Volume 54, Issue 46 , 2021 ; 00223727 (ISSN) Jafaripour, H ; Dehghan, P ; Zare, A. M ; Sanaee, Z ; Ghasemi, S ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    Here, cobalt oxide nanostructures synthesized on vertically aligned copper oxide nanowires (NWs) have been investigated as a possible anode material for Lithium-ion batteries (LIBs). Copper oxide NWs were formed by thermal oxidation of electrochemically deposited copper on the stainless steel mesh substrate. The process used allows the formation of highly dense copper oxide NWs with excellent adhesion to the conductive current collector substrate. A simple hydrothermal method was implemented for the deposition of cobalt oxide nanostructures on the copper oxide NWs. The as-prepared binder-free copper oxide@cobalt oxide NWs electrode exhibits a high initial specific capacity of 460 mAh g-1 at... 

    Enhanced electrochemical performance and thermal stability of ZrO2- And rGO-ZrO2-Coated Li[Ni0.8Co0.1Mn0.1]O2Cathode material for Li-Ion batteries

    , Article ACS Applied Energy Materials ; Volume 4, Issue 1 , 2021 , Pages 934-945 ; 25740962 (ISSN) Khalili Azar, M ; Razmjoo Khollari, M. A ; Esmaeili, M ; Heidari, E ; Hosseini Hosseinabad, S. M ; Siavash Moakhar, R ; Dolati, A ; Ramakrishna, S ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    LiNi0.8Co0.1Mn0.1O2 (NCM811) has been considered as a promising cathode for Li-ion batteries (LIBs) due to its high electrochemical capacity and low cost; however, poor cycling stability is one of the main restricting factors in industrial applications of the NCM811 cathode material. Notably, the capacity fading and low structural stability of NCM811 are intensified at elevated temperatures. ZrO2- and composite rGO-ZrO2-coated NCM811 were fabricated by a facile wet chemical method and evaluated at 25 and 55 °C to overcome these impediments. The ZrO2 coating provides superior cycling and thermal stability and perfectly protects the cathode active material from deleterious side reactions, and... 

    Nano cobalt-copper ferrite catalyzed regioselective α-C(sp3)–H cyanation of amines: Secondary, tertiary, and drug molecules

    , Article Catalysis Communications ; Volume 149 , 2021 ; 15667367 (ISSN) Matloubi Moghaddam, F ; Pourkaveh, R ; Heidarian, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Oxidative cyanation of sp3C–H bonds at the α position of amines was achieved using CoCuFe2O4 as a catalyst and NaCN as an inexpensive cyanide source at room temperature. CoCuFe2O4 was found to be an active catalyst for Csp [3]-Csp coupling, efficiently delivering valuable α-aminonitriles from tertiary/secondary amines in good yields. The corresponding products were obtained with high selectivity toward α position. In addition, functional group tolerance offered the opportunity for application in late-stage functionalization of biologically active molecules. This transformation proceeds convenient on a gram-scale, and the catalyst can be reused for several runs with consistent catalytic... 

    Electrochemical performance and elevated temperature properties of the TiO2-Coated Li[Ni0.8Co0.1Mn0.1]O2 cathode material for high-safety li-ion batteries

    , Article ACS Applied Energy Materials ; Volume 4, Issue 5 , 2021 , Pages 5304-5315 ; 25740962 (ISSN) Razmjoo Khollari, M. A ; Azar, M. K ; Esmaeili, M ; Malekpour, N ; Hosseini Hosseinabad, S. M ; Moakhar, R. S ; Dolati, A ; Ramakrishna, S ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Nowadays, the LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode material has attracted great research interest due to its high energy density and less usage of costly raw materials. However, the high nickel content of NCM811 brings about an extremely unstable interface between the electrode and electrolyte and therefore inferior cyclic stability. Herein, we have proposed a straightforward method to deliver 1, 2, and 4 wt % of TiO2 nanoparticles (NPs) on the surface of the NCM811 cathode material and to improve its properties at room and high temperatures. Based on scanning electron microscopy and transmission electron microscopy observations, the coating thickness varies from 10 to 35 nm and the 2 wt %... 

    3D flower-like nickel cobalt sulfide directly decorated grassy nickel sulfide and encapsulated iron in carbon sphere hosts as hybrid energy storage device

    , Article Applied Surface Science ; Volume 558 , 2021 ; 01694332 (ISSN) Shahi, M ; Hekmat, F ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Developing high-performance supercapacitors is of great significance in the area of renewable energies by virtue of having both high energy and power densities. In this work, an innovative strategy is employed for the fabrication of binder-free binary nickel–cobalt-sulfide (NCS) nanosheets (NSs) directly decorated onto the hydrothermal nickel-sulfide (Ni3S2) nanowires (NWs) as the positive electrodes. The NCS/Ni3S2-nickel foam (NF) positive electrodes rendered superior specific capacity of 499.1 mAh.g−1 at 6 A.g−1. Encapsulated iron into the carbon sphere hosts (Fe-HTCSs) are used as the negative counterparts, exhibiting remarkable specific capacitance of 336.6 F.g−1 (at 0.1 A.g−1). The... 

    Hybrid supercapacitors constructed from double-shelled cobalt-zinc sulfide/copper oxide nanoarrays and ferrous sulfide/graphene oxide nanostructures

    , Article Journal of Colloid and Interface Science ; Volume 585 , 2021 , Pages 750-763 ; 00219797 (ISSN) Shahi, M ; Hekmat, F ; Shahrokhian, S ; Sharif University of Technology
    Academic Press Inc  2021
    Abstract
    Evolution of renewable energies in the era of the modernized world has been strongly tied up to the incessant development of high-performance energy storage systems benefiting from both high energy and power densities. In the present work, binder-free positive electrodes are fabricated via a facile electrochemical deposition route in which copper oxide nanorods (CuO NRs) directly grown onto the copper foam (CF) are decorated with bimetallic cobalt-zinc sulfide nanoarrays (Co-Zn-S NAs). The fabricated Co-Zn-S@CuO-CFs represent promising specific capacity of 317.03 C.g−1 at 1.76 A.g−1, along with superior cyclic stability (113% retention after 4500 cycles). Negative electrodes were further... 

    Dual-electrocatalysis behavior of star-like zinc-cobalt-sulfide decorated with cobalt-molybdenum-phosphide in hydrogen and oxygen evolution reactions

    , Article Nanoscale ; Volume 13, Issue 41 , 2021 , Pages 17576-17591 ; 20403364 (ISSN) Shamloofard, M ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Although important advances have been acquired in the field of electrocatalysis, the design and fabrication of highly efficient and stable non-noble earth-abundant metal catalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) remain a significant challenge. In this study, we have designed a superior bifunctional catalyst for OER and HER in alkaline media based on the Co-Mo-P/Zn-Co-S multicomponent heterostructure. The as-prepared multicomponent heterostructure was successfully obtained via a simple three-step hydrothermal-sulfidation-electrodeposition process consisting of star-like Co-Zn-S covered with Co-Mo-P. The structure and morphology evaluation of the... 

    Beyond hierarchical mixed nickel-cobalt hydroxide and ferric oxide formation onto the green carbons for energy storage applications

    , Article Journal of Colloid and Interface Science ; Volume 593 , 2021 , Pages 182-195 ; 00219797 (ISSN) Abbasi, S ; Hekmat, F ; Shahrokhian, S ; Sharif University of Technology
    Academic Press Inc  2021
    Abstract
    To attain superior energy density concurrently with high power density, high-performance supercapacitors have been developed. Herein an innovative strategy has been adopted to fabricate unique binder-free electrodes composed of a unique porous structure of binary metal carbonate hydroxide nanomace-decorated hydrothermal porous carbon spheres (PCSs). Hierarchical nickel-cobalt carbonate hydroxide (NiCOCH) nanomaces, directly grown on PCSs, are used as positive electrodes for supercapacitors fabrication. Furthermore, Fe2O3@PCS composites, having benefits of highly reversible redox reaction in the negative potential window and highly porous structure, are employed as the negative electrode in... 

    Beyond hierarchical mixed nickel-cobalt hydroxide and ferric oxide formation onto the green carbons for energy storage applications

    , Article Journal of Colloid and Interface Science ; Volume 593 , 2021 , Pages 182-195 ; 00219797 (ISSN) Abbasi, S ; Hekmat, F ; Shahrokhian, S ; Sharif University of Technology
    Academic Press Inc  2021
    Abstract
    To attain superior energy density concurrently with high power density, high-performance supercapacitors have been developed. Herein an innovative strategy has been adopted to fabricate unique binder-free electrodes composed of a unique porous structure of binary metal carbonate hydroxide nanomace-decorated hydrothermal porous carbon spheres (PCSs). Hierarchical nickel-cobalt carbonate hydroxide (NiCOCH) nanomaces, directly grown on PCSs, are used as positive electrodes for supercapacitors fabrication. Furthermore, Fe2O3@PCS composites, having benefits of highly reversible redox reaction in the negative potential window and highly porous structure, are employed as the negative electrode in... 

    Facile synthesis of highly efficient bifunctional electrocatalyst by vanadium oxysulfide spheres on cobalt-cobalt sulfonitride nanosheets for oxygen and hydrogen evolution reaction

    , Article Electrochimica Acta ; Volume 391 , 2021 ; 00134686 (ISSN) Asen, P ; Esfandiar, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Synthesis of efficient, low-cost, and stable bifunctional electrocatalysts with earth-abundant resources for electrochemical water electrolysis is a challenging subject for large-scale energy conversion processes. Herein, we report a high-performance electrocatalyst based on vanadium oxysulfide/cobalt-cobalt sulfonitride (VOS/Co-CoSN) for oxygen and hydrogen evolution reaction (OER and HER). The Co-CoSN film was synthesized on a copper sheet (CS) by a facile electrodeposition method. Then, VOS was electrochemically grown onto the Co-CoSN@CS electrode at various deposition times. At the optimal deposition time (300 s), the obtained VOS-300/Co-CoSN catalyst was studied for OER and HER in... 

    Microwave-assisted decoration of cotton fabrics with Nickel-Cobalt sulfide as a wearable glucose sensing platform

    , Article Journal of Electroanalytical Chemistry ; Volume 890 , 2021 ; 15726657 (ISSN) Hekmat, F ; Ezzati, M ; Shahrokhian, S ; Unalan, H. E ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Flexibility and human-body compatibility have been emerged through the use of commercial fabrics (CFs) in designing wearable non-enzymatic glucose sensing platforms. In this work, electrodes fabricated through direct synthesis of ternary nickel–cobalt sulfide nanostructures (Ni-Co-S NSs) on the CFs (Ni-Co-S@CFs) using a fast and facile one-step microwave-assisted method for this purpose. Fabrication was followed by the structural and electrochemical characterization of the electrodes. The glucose-sensing ability of the prepared wearable electrodes was investigated via cyclic voltammetry (CV) and amperometry techniques in alkaline media. Two linear-responses in wide detection ranges of... 

    Surface modification of exchange-coupled Co/NiO x magnetic bilayer by bias sputtering

    , Article Applied Surface Science ; Volume 252, Issue 2 , 2005 , Pages 466-473 ; 01694332 (ISSN) Sangpour, P ; Akhavan, O ; Moshfegh, A. Z ; Jafari, G. R ; Kavei, G ; Sharif University of Technology
    Elsevier  2005
    Abstract
    We have investigated the effect of bias voltage on sheet resistance, surface roughness and surface coverage of Co/NiO x magnetic bilayer. In addition, interface topography and corrosion resistance of the Ta/Co/Cu/Co/NiO x /Si(1 0 0) system have been studied for Co layers deposited at an optimum bias voltage. Atomic force microscopy (AFM) and four point probe sheet resistance (Rs) measurement have been used to determine surface and electrical properties of the sputtered Co layer at different bias voltages ranging from 0 to -80 V. The Co/NiO x bilayer exhibits a minimum surface roughness and low sheet resistance value with a maximum surface coverage at Vb=-60 V resulted in a slight increase of... 

    Spectrophotometric studies of molecular complex formation between water-soluble cobalt(II) Schiff base complex and nucleotides in mixed solvent systems

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 61, Issue 13-14 , 2005 , Pages 3061-3065 ; 13861425 (ISSN) Boghaei, D. M ; Gharagozlou, M ; Sharif University of Technology
    2005
    Abstract
    The formation constants for 1:1 molecular complex formation between water-soluble cobalt(II) tetradentate Schiff base complex, disodium[{bis(4- methoxy-5-sulfo-salicylaldehyde)-4,5-dimethyl-o-phenylenediiminato}cobalt(II)], Na2[Co(SO3-4-meosal-4,5-dmophen)], and nucleotides, adenosine-5′-triphosphate (ATP) and cytidine-5′-triphosphate (CTP), in mixed solvent systems of ethanol and water with different volume fractions of ethanol and water have been determined spectrophotometrically at constant ionic strength (I = 0.2 mol dm-3 NaClO4) and temperature 278 K. Trends in the values of formation constants according to the volume fractions of ethanol and water in ethanol and water mixed solvent... 

    Carbon-paste electrode modified with cobalt-5-nitrolsalophen as a sensitive voltammetric sensor for detection of captopril

    , Article Sensors and Actuators, B: Chemical ; Volume 109, Issue 2 , 2005 , Pages 278-284 ; 09254005 (ISSN) Shahrokhian, S ; Karimi, M ; Khajehsharifi, H ; Sharif University of Technology
    2005
    Abstract
    The electrochemical behavior of captopril at the surface of a carbon-paste electrode (CPE) modified with cobalt-5-nitrolsalophen (CoNSal) is described. The prepared electrode shows an excellent electrocatalytic activity toward the oxidation of captopril, which is leading to marked lowering in the anodic overpotential and considerable improvement of sensitivity (anodic current). Whereas at the surface of unmodified electrode an electrochemical activity for captopril cannot be observed, a very sharp anodic wave with an anodic peak potential about 650 mV (versus Ag/AgCl) is obtained using the prepared modified electrode. This catalytic wave is assigned to mediating of Co(III)/Co(II) redox...