Loading...
Search for: cobalt-compounds
0.012 seconds

    How does cobalt phosphate modify the structure of TiO2 nanotube array photoanodes for solar water splitting?

    , Article Catalysis Today ; Volume 335 , 2019 , Pages 306-311 ; 09205861 (ISSN) Maghsoumi, A ; Naseri, N ; Calloni, A ; Bussetti, G ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    TiO2 nanotube arrays (TNA) have been modified by cobalt phosphate (CoPi) through potentiostatic electrodeposition method. Different samples have been prepared by changing the loaded CoPi through the deposition time from 10 to 960 min. Formed catalytic materials have been characterized by different methods. Although charge transfer resistance of the CoPi/TNA photoanodes have been decreased from 5.5 to 4.0 kΩ by increasing the deposition time from 5 to 60 min, the maximum photoresponse was obtained for 10 min CoPi deposition leading to 24% more photocurrent compare to bare TNA which proposed optimum value for cobalt phosphate decoration. Based on field emission scanning electron microscopy... 

    Hierarchical nickel-cobalt sulfide/niobium pentoxide decorated green carbon spheres toward efficient energy storage

    , Article Sustainable Energy and Fuels ; Volume 6, Issue 12 , 2022 , Pages 3042-3055 ; 23984902 (ISSN) Hekmat, F ; Shahi, M ; Dubal, D. P ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Progression in the renewable energy field is tied to the development of high-performance energy storage devices with superior power and energy densities. Herein, an innovative material design was employed to prepare binder-free nickel-cobalt sulfide (NCS) on niobium pentoxide (Nb2O5)-decorated carbon spheres (CSs). Initially, CSs were directly grown on nickel foam (NF) via a hydrothermal carbonization approach. Core/shell-like NCS@Nb2O5@CS-NF was then synthesized through a hydrothermal process, followed by an electrodeposition process. When employed as an electrode material, NCS@Nb2O5@CS-NF achieved an excellent volumetric capacity of 9300 C L−1 at a current density of 18 A L−1. Later, an... 

    Graphene based catalysts for deep hydrodesulfurization of naphtha and diesel fuels: A physiochemical study

    , Article Fuel ; Volume 165 , 2016 , Pages 468-476 ; 00162361 (ISSN) Hajjar, Z ; Kazemeini, M ; Rashidi, A ; Bazmi, M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In this study, graphene materials have been synthesized with solid camphor (C10H16O) and methane gas as carbon precursors using atmospheric pressure chemical vapor deposition (CVD) technique at a temperature range of 900-1000 °C for a period of 45 min over copper nanoparticles. Influence of the carbon precursors upon the shape, number of layers and yield of the synthesized graphene samples has been investigated. In this venue, the compounds synthesized were functionalized with oxygen groups and impregnated by cobalt and molybdenum active phases. Moreover, the total metal loading and Co/Mo weight ratio of prepared compounds were adjusted to their industrial nominal values of 10% and 0.33,... 

    Flexible and mechanically durable asymmetric supercapacitor based on nico-layered double hydroxide and nitrogen-doped graphene using a simple fabrication method

    , Article Energy Technology ; Volume 7, Issue 5 , 2019 ; 21944288 (ISSN) Mehrabimatin, B ; Gilshteyn, E. P ; Melandsø Buan, M. E ; Sorsa, O ; Jiang, H ; Iraji zad, A ; Shahrokhian, S ; Nasibulin, A. G ; Kallio, T ; Sharif University of Technology
    Wiley-VCH Verlag  2019
    Abstract
    A high-performing, lightweight, and flexible asymmetric supercapacitor (ASC) using NiCo-layered double hydroxide (NiCo LDH) supported on 3D nitrogen-doped graphene (NG) as a positive electrode and NG as a negative electrode is demonstrated. Highly conductive NG provides fast electron transfer and facilitates (dis)charging of NiCo LDH deposited on it. The composite electrode of NiCo LDH@NG exhibits a high specific capacitance of 1421 F g −1 at 2 A g −1 . Moreover, the as-obtained hybrid electrode shows an excellent rate capability with a specific capacitance of 1397 F g −1 at a high current density of 10 A g −1 , which is about 98% of the capacitance obtained at 2 A g −1 . The flexible ASC... 

    First heterobimetallic AgI–CoIII coordination compound with both bridging and terminal –NO2 coordination modes: Synthesis, characterization, structural and computational studies of (PPh3)2AgI– (μ-κ2O,O′:κN-NO2)–COIII(DMGH)2(κN-NO2)

    , Article Acta Crystallographica Section C: Structural Chemistry ; Volume 74, Issue 8 , 2018 , Pages 882-888 ; 20532296 (ISSN) Kia, R ; Batmanghelich, S ; Raithby, P. R ; Sharif University of Technology
    Wiley-Blackwell  2018
    Abstract
    An unusual heterobimetallic bis(triphenylphosphane)(NO2)AgI–CoIII(dimethyl-glyoximate)(NO2) coordination compound with both bridging and terminal –NO2 (nitro) coordination modes has been isolated and characterized from the reaction of [CoCl(DMGH)2(PPh3)] (DMGH2 is dimethylglyoxime or N,N′-di-hydroxybutane-2,3-diimine) with excess AgNO2. In the title compound, namely bis(dimethylglyoximato-1κ2O,O′)(μ-nitro-1κN:2κ2O,O′)(nitro-1κN)bis(triphenyl-phosphane-2κP)cobalt(III)silver(I), [AgCo(C4H7N2O2)2(NO2)2(C18H15P)2], one of the ambidentate –NO2 ligands, in a bridging mode, chelates the AgI atom in an isobidentate κ2O,O′-manner and its N atom is coordinated to the CoIII atom. The other –NO2 ligand... 

    Facile synthesis of highly efficient bifunctional electrocatalyst by vanadium oxysulfide spheres on cobalt-cobalt sulfonitride nanosheets for oxygen and hydrogen evolution reaction

    , Article Electrochimica Acta ; Volume 391 , 2021 ; 00134686 (ISSN) Asen, P ; Esfandiar, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Synthesis of efficient, low-cost, and stable bifunctional electrocatalysts with earth-abundant resources for electrochemical water electrolysis is a challenging subject for large-scale energy conversion processes. Herein, we report a high-performance electrocatalyst based on vanadium oxysulfide/cobalt-cobalt sulfonitride (VOS/Co-CoSN) for oxygen and hydrogen evolution reaction (OER and HER). The Co-CoSN film was synthesized on a copper sheet (CS) by a facile electrodeposition method. Then, VOS was electrochemically grown onto the Co-CoSN@CS electrode at various deposition times. At the optimal deposition time (300 s), the obtained VOS-300/Co-CoSN catalyst was studied for OER and HER in... 

    Fabrication of a sensitive and fast response electrochemical glucose sensing platform based on co-based metal-organic frameworks obtained from rapid in situ conversion of electrodeposited cobalt hydroxide intermediates

    , Article Talanta ; Volume 210 , 2020 Shahrokhian, S ; Ezzati, M ; Hosseini, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, for the first time, we reported a fast and facile three-step in situ strategy for direct controllable growth of the Co3(BTC)2 MOFs thin films on the GCE, through the rapid conversion of the electrodeposited Co(OH)2 nano-flakes on rGO/GCE, to crystalline rectangular bar-shape structures of MOFs. X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and elemental mapping analysis used to the structural and morphological characterization of the well-synthesized MOFs. The as-prepared Co3(BTC)2 MOFs were used to construct a non-enzymatic sensing platform for determining the glucose... 

    Extraction of ZN, MN and CO from ZN-MN-CO-CD-NI containing solution using D2EHPA, Cyanex® 272 and Cyanex® 302

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 24, Issue 2 , 2011 , Pages 183-192 ; 1728-144X (ISSN) Darvishi, D ; Haghshenas, D. F ; Alamdari, E. K ; Sadrnezhaad, S. K ; Sharif University of Technology
    2011
    Abstract
    Effects of pH, D2EHPA, Cyanex® 272 and Cyanex® 302 on extraction of zinc, manganese and cobalt from a Zn-Mn-Co-Cd-Ni containing solution at the room temperature was comprehensively investigated. Addition of Cyanex® 302 indicated a left-shifting-effect on the extraction curve of zinc, a right-shifting-effect on the extraction curve of manganese and no effect on the extraction of cobalt. Addition of Cyanex® 272 shifted all three curves to the right. Therefore, the most suitable extractant for separation of zinc from manganese was therefore 0.3-0.3 mixture of D2EHPA and Cyanex® 302, and that for separation of manganese from cobalt was pure D2EHPA. The stoichiometric coefficient for the... 

    Enhanced electrochemical performance and thermal stability of ZrO2- And rGO-ZrO2-Coated Li[Ni0.8Co0.1Mn0.1]O2Cathode material for Li-Ion batteries

    , Article ACS Applied Energy Materials ; Volume 4, Issue 1 , 2021 , Pages 934-945 ; 25740962 (ISSN) Khalili Azar, M ; Razmjoo Khollari, M. A ; Esmaeili, M ; Heidari, E ; Hosseini Hosseinabad, S. M ; Siavash Moakhar, R ; Dolati, A ; Ramakrishna, S ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    LiNi0.8Co0.1Mn0.1O2 (NCM811) has been considered as a promising cathode for Li-ion batteries (LIBs) due to its high electrochemical capacity and low cost; however, poor cycling stability is one of the main restricting factors in industrial applications of the NCM811 cathode material. Notably, the capacity fading and low structural stability of NCM811 are intensified at elevated temperatures. ZrO2- and composite rGO-ZrO2-coated NCM811 were fabricated by a facile wet chemical method and evaluated at 25 and 55 °C to overcome these impediments. The ZrO2 coating provides superior cycling and thermal stability and perfectly protects the cathode active material from deleterious side reactions, and... 

    Enhanced electrochemical activity of Co3O4/Co9S8 heterostructure catalyst for water splitting

    , Article International Journal of Hydrogen Energy ; Volume 47, Issue 72 , Volume 47, Issue 72 , 2022 , Pages 30970-30980 ; 03603199 (ISSN) Khan, N. A ; Ahmad, I ; Rashid, N ; Zafar, M. N ; Shehzad, F. K ; ullah, Z ; Ul-Hamid, A ; Nazar, M. F ; Junaid, M ; Faheem, M ; Shafqat, S. S ; Jabeen, U ; Dahshan, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The dearth of efficient, robust, and economical electrocatalysts for water oxidation is dubiously the key obstacle for renewable energy devices, so synthesis of efficient, and cost-effective metal-based water oxidation catalysts is vital. Herein, Co3O4, Co9S8 catalysts and their heterostructure Co3O4/Co9S8 were synthesized and evaluated as water oxidation electrocatalysts. The characterization of Co3O4, Co9S8, and Co3O4/Co9S8 electrocatalysts was performed using Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction techniques. The heterostructure Co3O4/Co9S8 (1.46 V) exhibited water oxidation electrocatalysis at extremely low onset potential compared to... 

    Electrochemical performance and elevated temperature properties of the TiO2-Coated Li[Ni0.8Co0.1Mn0.1]O2 cathode material for high-safety li-ion batteries

    , Article ACS Applied Energy Materials ; Volume 4, Issue 5 , 2021 , Pages 5304-5315 ; 25740962 (ISSN) Razmjoo Khollari, M. A ; Azar, M. K ; Esmaeili, M ; Malekpour, N ; Hosseini Hosseinabad, S. M ; Moakhar, R. S ; Dolati, A ; Ramakrishna, S ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Nowadays, the LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode material has attracted great research interest due to its high energy density and less usage of costly raw materials. However, the high nickel content of NCM811 brings about an extremely unstable interface between the electrode and electrolyte and therefore inferior cyclic stability. Herein, we have proposed a straightforward method to deliver 1, 2, and 4 wt % of TiO2 nanoparticles (NPs) on the surface of the NCM811 cathode material and to improve its properties at room and high temperatures. Based on scanning electron microscopy and transmission electron microscopy observations, the coating thickness varies from 10 to 35 nm and the 2 wt %... 

    Electrochemical determinations of 6-mercaptopurine on the surface of a carbon nanotube-paste electrode modified with a cobalt salophen complex

    , Article Journal of Solid State Electrochemistry ; Volume 16, Issue 4 , April , 2012 , Pages 1643-1650 ; 14328488 (ISSN) Shahrokhian, S ; Ghorbani Bidkorbeh, F ; Mohammadi, A ; Dinarvand, R ; Sharif University of Technology
    2012
    Abstract
    A mixture of multi-walled carbon nanotube/graphite paste electrode modified with a salophen complex of cobalt was prepared and was applied for the study of the electrochemical behavior of 6-mercaptopurine (MP) using cyclic and differential pulse voltammetry (DPV). An excellent electrocatalytic activity toward the oxidation of MP was achieved, which led to a considerable lowering in the anodic overpotential and remarkable increase in the response sensitivity in comparison with unmodified electrode. Utilizing DPV method, a linear dynamic range of 1-100 μM with detection limit of 0.1 μM was obtained in phosphate buffer of pH 3.0. The electrochemical detection system was very stable, and the... 

    Electrocatalytic determination of sumatriptan on the surface of carbon-paste electrode modified with a composite of cobalt/Schiff-base complex and carbon nanotube

    , Article Bioelectrochemistry ; Volume 81, Issue 2 , 2011 , Pages 81-85 ; 15675394 (ISSN) Amiri, M ; Pakdel, Z ; Bezaatpour, A ; Shahrokhian, S ; Sharif University of Technology
    2011
    Abstract
    The electrochemical oxidation of sumatriptan on the surface of carbon paste electrode modified with multi-walled carbon nanotube and cobalt methyl-salophen complex is studied by using cyclic voltammetry and polarization studies. The results indicate that the drug is irreversibly oxidized in a one electron oxidation mechanism. It was found that the peak potential shifted negatively with increasing pH, confirms that H + participate in the oxidation process. The electrode is shown to be very effective for the detection of sumatriptan in the presence of other biological reductant compounds. The prepared modified electrode exhibits a very good resolution between the voltammetric peaks of... 

    Dual-electrocatalysis behavior of star-like zinc-cobalt-sulfide decorated with cobalt-molybdenum-phosphide in hydrogen and oxygen evolution reactions

    , Article Nanoscale ; Volume 13, Issue 41 , 2021 , Pages 17576-17591 ; 20403364 (ISSN) Shamloofard, M ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Although important advances have been acquired in the field of electrocatalysis, the design and fabrication of highly efficient and stable non-noble earth-abundant metal catalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) remain a significant challenge. In this study, we have designed a superior bifunctional catalyst for OER and HER in alkaline media based on the Co-Mo-P/Zn-Co-S multicomponent heterostructure. The as-prepared multicomponent heterostructure was successfully obtained via a simple three-step hydrothermal-sulfidation-electrodeposition process consisting of star-like Co-Zn-S covered with Co-Mo-P. The structure and morphology evaluation of the... 

    Direct growth of nickel-cobalt oxide nanosheet arrays on carbon nanotubes integrated with binder-free hydrothermal carbons for fabrication of high performance asymmetric supercapacitors

    , Article Composites Part B: Engineering ; Volume 172 , 2019 , Pages 41-53 ; 13598368 (ISSN) Hekmat, F ; Shahrokhian, S ; Hosseini, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A high performance asymmetric supercapacitor (ASC)has been fabricated by using nickel oxide-cobalt oxide nanosheets (NiO–CoO NSs), which were directly grown on carbon nanotubes (CNTs)and hydrothermal carbon spheres (HTCs)as positive and negative electrodes, respectively. Both electrode materials are binder-free prepared by using a catalytic chemical vapour deposition (CVD)approach followed by a facile hydrothermal method for cathode and a one-step environmental-friendly route called hydrothermal carbonization for anode. Using NiO–CoO NSs@CNTs and HTCs, which were directly grown on Ni foam, not only leads to a very small equivalent series resistance, but also provides an impressive capacitive... 

    Direct decoration of carbon nanohorns with binary nickel-cobalt sulfide nanosheets towards non-enzymatic glucose sensing in human fluids

    , Article Electrochimica Acta ; Volume 428 , 2022 ; 00134686 (ISSN) Kachouei, M. A ; Hekmat, F ; Wang, H ; Amaratunga, G. A. J ; Unalan, H. E ; Shahrokhian, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    A highly controllable, green, and rapid strategy is demonstrated for fabricating of highly sensitive non-enzymatic glucose sensing platforms. Carbon nanohorns (CNHs) were decorated onto the screen-printed electrodes. Binary nickel-cobalt sulfide (NiCo-S) nanosheets (NSs) were then deposited on CNH-casted electrodes by a facile and scalable method. Following detailed structural characterization and the electrocatalytic activity of the fabricated NiCo-S/CNH electrodes towards electro-oxidation of glucose was examined in detail. The proposed electrodes operated within two distinct linear dynamic ranges of 0.001- 0.330 mM and 0.330 - 4.53 mM with sensitivities of 1842 µA.mM−1.cm−2 and 854... 

    CVD-grown TiO2 particles as light scattering structures in dye-sensitized solar cells

    , Article RSC Advances ; Volume 2, Issue 32 , 2012 , Pages 12278-12285 ; 20462069 (ISSN) Pazoki, M ; Taghavinia, N ; Abdi, Y ; Tajabadi, F ; Boschloo, G ; Hagfeldt, A ; Sharif University of Technology
    2012
    Abstract
    Chemical vapour deposition (CVD) at atmospheric pressure, using TiCl 4 as a precursor, was used to grow nanostructured TiO2 films on glass substrates. At relatively low temperatures (∼245 °C) and using relatively high reactant concentrations, different nano-morphologies of TiO2 were formed simultaneously, such as spheres, nanowires and mesoporous structures. The TiO2 spheres were successfully applied as light-scattering particles in dye-sensitized solar cells, either by direct deposition onto electrodes in the reactor, or by preparation of a printing paste from the deposited particles. For dye-sensitized solar cells using the organic dye D35 as sensitizer and a cobalt-complex based redox... 

    Crystallinity of CoSi2 nanolayer grown by refractory metal interlayer and cap layer methods

    , Article Journal of Physics: Conference Series ; Volume 100, Issue PART 4 , 2008 ; 17426588 (ISSN) Akhavan, O ; Moshfegh, A. Z ; Sharif University of Technology
    Institute of Physics Publishing  2008
    Abstract
    Epitaxial formation of CoSi2 nanolayer by solid state reaction of Co-Si in refractory metal intermediate-layer and cap-layer systems was investigated. Thin films of Ta and W, as the refractory metal intermediate or cap layers of the Co film, were deposited on Si(100) substrate and then heat-treated. The both interlayers resulted in formation of epitaxial CoSi 2 with (100) crystallographic orientation at 900°C. However, in the Ta intermediated system, the grown CoSi2 layer was thermally unstable at 1000°C, unlike the W system with a stable silicide layer. We found that use of W cap-layer cannot yield an epitaxial CoSi2 phase. But, a Ta cap-layer resulted in formation of epitaxial CoSi2(100)... 

    Copper oxide@cobalt oxide core-shell nanostructure, as an efficient binder-free anode for lithium-ion batteries

    , Article Journal of Physics D: Applied Physics ; Volume 54, Issue 46 , 2021 ; 00223727 (ISSN) Jafaripour, H ; Dehghan, P ; Zare, A. M ; Sanaee, Z ; Ghasemi, S ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    Here, cobalt oxide nanostructures synthesized on vertically aligned copper oxide nanowires (NWs) have been investigated as a possible anode material for Lithium-ion batteries (LIBs). Copper oxide NWs were formed by thermal oxidation of electrochemically deposited copper on the stainless steel mesh substrate. The process used allows the formation of highly dense copper oxide NWs with excellent adhesion to the conductive current collector substrate. A simple hydrothermal method was implemented for the deposition of cobalt oxide nanostructures on the copper oxide NWs. The as-prepared binder-free copper oxide@cobalt oxide NWs electrode exhibits a high initial specific capacity of 460 mAh g-1 at... 

    Construction of a ternary nanocomposite, polypyrrole/fe-co sulfide-reduced graphene oxide/nickel foam, as a novel binder-free electrode for high-performance asymmetric supercapacitors

    , Article Journal of Physical Chemistry C ; Volume 124, Issue 8 , 2020 , Pages 4393-4407 Karimi, A ; Kazeminezhad, I ; Naderi, L ; Shahrokhian, S ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    The development of asymmetric supercapacitors requires the design of electrode construction and the utilization of new electroactive materials. In this regard, an effective strategy is the loading of active materials on an integrated 3D porous graphene-based substrate such as graphene foam (GF). Herein, we successfully designed and fabricated a novel ternary binder-free nanocomposite consisting of polypyrrole, Fe-Co sulfide, and reduced graphene oxide on a nickel foam electrode (PPy/FeCoS-rGO/NF) via a facile, cost-effective, and powerful electrodeposition method for application in high-performance asymmetric supercapacitors. The monolithic 3D porous graphene foam (GF) obtained by the facile...