Loading...
Search for: cobalt-compounds
0.008 seconds
Total 73 records

    Co-evolutionary reliability-oriented high-level synthesis

    , Article 2008 IEEE International Symposium on Circuits and Systems, ISCAS 2008, Seattle, WA, 18 May 2008 through 21 May 2008 ; 2008 , Pages 2026-2029 ; 02714310 (ISSN) ; 9781424416844 (ISBN) Safari, S ; Aminzadeh, S ; Sharif University of Technology
    2008
    Abstract
    The main contribution of this paper is utilizing bio-inspired evolutionary algorithm for reliability oriented high level synthesis. In this paper genetic algorithm is used to schedule a data-flow graph considering latency and resource allocation considering resource constraints and area overhead. Then a co-evolutionary strategy merges the results of these solutions to find the RT level design of the circuit which satisfies both performance and area constraints. To satisfy the user-defined reliability, another genetic algorithm is developed to insert some hardware redundancies to the resulted data-path. Experimental results show using the proposed approach results in an acceptable reliability... 

    Co-doping a metal (Cr, Mn, Fe, Co, Ni, Cu, and Zn) on Mn/ZSM-5 catalyst and its effect on the catalytic reduction of nitrogen oxides with ammonia

    , Article Research on Chemical Intermediates ; Volume 43, Issue 4 , 2017 , Pages 2143-2157 ; 09226168 (ISSN) Saeidi, M ; Hamidzadeh, M ; Sharif University of Technology
    Springer Netherlands  2017
    Abstract
    Selective catalytic reduction (SCR) of NOx by NH3 over a series of Mn–M/Z catalysts (M = Cr, Mn, Fe, Co, Ni, Cu, Zn, and Z = the ZSM-5 Zeolite) synthesized by wet impregnation method was investigated. Mn–Fe/Z, Mn–Co/Z, and Mn–Cu/Z catalysts exhibited approximately 100 % NOx conversion over a wide temperature range (200–360 °C) in a defined atmospheric condition, which was noticeably greater than that of Mn–Cr/Z (340–360 °C). Furthermore, the effect of addition of second metal oxide species to the initial Mn/Z catalyst on the structure of catalysts was studied by several characterization techniques. BET measurements revealed high surface area and pore volume of the Mn–Cu/Z catalyst. In... 

    Cobalt vanadium chalcogenide microspheres decorated with dendrite-like fiber nanostructures for flexible wire-typed energy conversion and storage microdevices

    , Article Nanoscale ; Volume 14, Issue 25 , 2022 , Pages 9150-9168 ; 20403364 (ISSN) Naderi, L ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    The increasing energy demand for next-generation portable and miniaturized electronics has drawn tremendous attention to develop microscale energy storage and conversion devices with light weight and flexible characteristics. Herein, we report the preparation of flower-like cobalt vanadium selenide/nickel copper selenide (CoVSe/NiCuSe) microspheres with three-dimensional hierarchical structure of micropore growth on copper wire for a flexible fiber microsupercapacitor (microSC) and overall water splitting. The CoV-LDH microspheres are anchored on the dendrite-like NiCu nanostructured Cu wire using a hydrothermal method (CoV-LDH/NiCu@CW). The sulfidation and selenization of CoV-LDH/NiCu was... 

    Chromogenic detection of xylene isomers and luminogenic chemosensing of o-xylene employing a new macrocyclic cobalt complex: synthesis, and X-ray crystallographic, spectroscopic and computational studies

    , Article New Journal of Chemistry ; Volume 46, Issue 43 , 2022 , Pages 20745-20754 ; 11440546 (ISSN) Ghanbari, B ; Asadi Mofarrah, L ; Jamjah, A ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Here, we report the synthesis and characterization of a binuclear Co(ii) complex (Co2(2py)2Cl4) with two dinaphtho-diazacrown ether macrocyclic ligands, bearing two pyridine arms as a colourimetric and fluorescent sensor for detecting different xylene isomers as well as acting as a catalyst for the oxidation of o- and m-xylene under vacuum at room temperature. Chromogenic detection occurred when Co2(2py)2Cl4 was exposed to the xylene isomers, wherein the original blue colour of the complex changed to green and green-blue in the presence of o- and m-xylene, respectively. Meanwhile, no colour change was observed in the presence of the p-xylene isomer. Fluorescence spectroscopy revealed that... 

    Carbon-paste electrode modified with cobalt-5-nitrolsalophen as a sensitive voltammetric sensor for detection of captopril

    , Article Sensors and Actuators, B: Chemical ; Volume 109, Issue 2 , 2005 , Pages 278-284 ; 09254005 (ISSN) Shahrokhian, S ; Karimi, M ; Khajehsharifi, H ; Sharif University of Technology
    2005
    Abstract
    The electrochemical behavior of captopril at the surface of a carbon-paste electrode (CPE) modified with cobalt-5-nitrolsalophen (CoNSal) is described. The prepared electrode shows an excellent electrocatalytic activity toward the oxidation of captopril, which is leading to marked lowering in the anodic overpotential and considerable improvement of sensitivity (anodic current). Whereas at the surface of unmodified electrode an electrochemical activity for captopril cannot be observed, a very sharp anodic wave with an anodic peak potential about 650 mV (versus Ag/AgCl) is obtained using the prepared modified electrode. This catalytic wave is assigned to mediating of Co(III)/Co(II) redox... 

    Biomass-derived wearable energy storage systems based on poplar tree-cotton fibers coupled with binary nickel-cobalt nanostructures

    , Article Sustainable Energy and Fuels ; Volume 4, Issue 2 , 2020 , Pages 643-654 Hekmat, F ; Unalan, H. E ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    We hereby demonstrate symmetric and asymmetric supercapacitors (SSCs and ASCs) based on core/shell-like Ni-Co oxide@cotton//Fe2O3-carbon nanotubes@cotton that are capable of storing a remarkable amount of energy, while retaining a high power density and long cycle life. Hierarchical, porous structures of Ni-Co-O nano-rod (NR) decorated Pd-activated cotton fibers (CFs) were fabricated using an eco-benign hydrothermal method and directly used as the cathode of the supercapacitors. Fe2O3-single-wall carbon nanotube (SWCNT) decorated CFs were employed as anodes of the fabricated ASCs. The assembled Ni-Co-O@cotton//Fe2O3-SWCNTs@cotton based ASCs possessed the benefits of a relatively high energy... 

    Beyond hierarchical mixed nickel-cobalt hydroxide and ferric oxide formation onto the green carbons for energy storage applications

    , Article Journal of Colloid and Interface Science ; Volume 593 , 2021 , Pages 182-195 ; 00219797 (ISSN) Abbasi, S ; Hekmat, F ; Shahrokhian, S ; Sharif University of Technology
    Academic Press Inc  2021
    Abstract
    To attain superior energy density concurrently with high power density, high-performance supercapacitors have been developed. Herein an innovative strategy has been adopted to fabricate unique binder-free electrodes composed of a unique porous structure of binary metal carbonate hydroxide nanomace-decorated hydrothermal porous carbon spheres (PCSs). Hierarchical nickel-cobalt carbonate hydroxide (NiCOCH) nanomaces, directly grown on PCSs, are used as positive electrodes for supercapacitors fabrication. Furthermore, Fe2O3@PCS composites, having benefits of highly reversible redox reaction in the negative potential window and highly porous structure, are employed as the negative electrode in... 

    Beyond hierarchical mixed nickel-cobalt hydroxide and ferric oxide formation onto the green carbons for energy storage applications

    , Article Journal of Colloid and Interface Science ; Volume 593 , 2021 , Pages 182-195 ; 00219797 (ISSN) Abbasi, S ; Hekmat, F ; Shahrokhian, S ; Sharif University of Technology
    Academic Press Inc  2021
    Abstract
    To attain superior energy density concurrently with high power density, high-performance supercapacitors have been developed. Herein an innovative strategy has been adopted to fabricate unique binder-free electrodes composed of a unique porous structure of binary metal carbonate hydroxide nanomace-decorated hydrothermal porous carbon spheres (PCSs). Hierarchical nickel-cobalt carbonate hydroxide (NiCOCH) nanomaces, directly grown on PCSs, are used as positive electrodes for supercapacitors fabrication. Furthermore, Fe2O3@PCS composites, having benefits of highly reversible redox reaction in the negative potential window and highly porous structure, are employed as the negative electrode in... 

    Arithmetic circuits verification without looking for internal equivalences

    , Article 2008 6th ACM and IEEE International Conference on Formal Methods and Models for Co-Design, MEMOCODE'08, Anaheim, CA, 5 June 2008 through 7 June 2008 ; 2008 , Pages 7-16 ; 9781424424177 (ISBN) Sarbishei, O ; Alizadeh, B ; Fujita, M ; Sharif University of Technology
    2008
    Abstract
    In this paper, we propose a novel approach to extract a network of half adders from the gate-level net-list of an addition circuit while no internal equivalences exist. The technique begins with a gatelevel net-list and tries to map it into word-level adders based on an efficient bit-level adder representation. It will be shown that the proposed technique is suitable for several gate-level architectures of multipliers, as it extracts adder components in a step-wise method. This approach can also be generalized to other arithmetic circuits. In order to evaluate the effectiveness of our approach, we run it on several arithmetic circuits and compare experimental results with those of... 

    Antibacterial properties of nanoporous graphene oxide/cobalt metal organic framework

    , Article Materials Science and Engineering C ; Volume 104 , 2019 ; 09284931 (ISSN) Hatamie, S ; Ahadian, M. M ; Soufi Zomorod, M ; Torabi, S ; Babaie, A ; Hosseinzadeh, S ; Soleimani, M ; Hatami, N ; Wei, Z. H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Metal-organic framework (MOF) based graphene oxide (GO) recently merits of attention because of the relative correspondence of GO with metal ions and organic binding linkers. Furthermore, introducing the GO to the Co-MOF to make a new nanoporous hybrid have are improved the selectivity and stability of the Co-MOF. Here the graphene oxide/cobalt metal organic framework (GO/Co-MOF) was synthesized by a solvothermal process using cobalt salt and terephthalic acid and used for biocidal activity, against the growth of the Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria. X-ray diffraction, Fourier transform infrared spectroscopy and Raman spectroscopy were confirmed... 

    3D ternary Ni: XCo2- xP/C nanoflower/nanourchin arrays grown on HCNs: A highly efficient bi-functional electrocatalyst for boosting hydrogen production via the urea electro-oxidation reaction

    , Article Nanoscale ; Volume 12, Issue 30 , 2020 , Pages 16123-16135 Rezaee, S ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    Over the last few years, substantial efforts have been made to develop earth-abundant bi-functional catalysts for urea oxidation and energy-saving electrolytic hydrogen production due to their low cost and the potential to replace traditional noble-metal-based catalysts. Nevertheless, finding a straightforward and effective route to prepare efficient catalysts with unique structural features and optimal supports still is a big challenge. Among the various candidates, metal-organic framework (MOF)-derived materials show great advantages as new kinds of active non-precious catalysts. On the other hand, the controllable integration of MOFs and carbon-based nanomaterials leads to further... 

    3D flower-like nickel cobalt sulfide directly decorated grassy nickel sulfide and encapsulated iron in carbon sphere hosts as hybrid energy storage device

    , Article Applied Surface Science ; Volume 558 , 2021 ; 01694332 (ISSN) Shahi, M ; Hekmat, F ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Developing high-performance supercapacitors is of great significance in the area of renewable energies by virtue of having both high energy and power densities. In this work, an innovative strategy is employed for the fabrication of binder-free binary nickel–cobalt-sulfide (NCS) nanosheets (NSs) directly decorated onto the hydrothermal nickel-sulfide (Ni3S2) nanowires (NWs) as the positive electrodes. The NCS/Ni3S2-nickel foam (NF) positive electrodes rendered superior specific capacity of 499.1 mAh.g−1 at 6 A.g−1. Encapsulated iron into the carbon sphere hosts (Fe-HTCSs) are used as the negative counterparts, exhibiting remarkable specific capacitance of 336.6 F.g−1 (at 0.1 A.g−1). The... 

    3D flower-like binary nickel cobalt oxide decorated coiled carbon nanotubes directly grown on nickel nanocones and binder-free hydrothermal carbons for advanced asymmetric supercapacitors

    , Article Nanoscale ; Volume 11, Issue 6 , 2019 , Pages 2901-2915 ; 20403364 (ISSN) Hekmat, F ; Shahrokhian, S ; Rahimi, S ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    The development of high performance supercapacitors with high energy densities without sacrificing power densities has always been at the leading edge of the emerging field of renewable energy. Herein, the design and fabrication of innovative high performance binder-free electrodes consisting of coiled carbon nanotubes (CNTs) and biomass-derived hydrothermal carbon spheres (HTCSs) as, respectively, positive and negative electrodes is reported. High performance asymmetric supercapacitors (ASCs) were developed using novel 3D core/shell-like binary Ni-Co oxide (NCO) decorated coiled CNTs directly grown on Ni nano-cone arrays (NCAs) and HTCSs directly deposited on NCAs. Novel 3D structures of...