Loading...
Search for: computer-simulation
0.014 seconds
Total 1255 records

    Motion of deformable ring made of IPMC

    , Article Proceedings of SPIE - The International Society for Optical Engineering ; Vol. 8409 , 2012 ; ISSN: 0277786X ; ISBN: 9780819490872 Firouzeh, A ; Alasty, A ; Ozmaeian, M ; Sharif University of Technology
    Abstract
    In this paper application of Ionic Polymer Metal Composite (IPMC) as actuator in a deformable ring capable of locomotion is studied. Such a deformable ring moves as a result of gravitational force acting on its body when its shape changes. It can be used in exploration, search and rescue missions in future, where using conventional robots with rigid bodies and actuators is impossible. Large deformation induced by small stimulating voltage, low stiffness the sensing characteristics that in future work can be used in feedback control make IPMC a good choice for such an application. In this work first a model for IPMC is introduce that can be used in simulating deformation of IPMC in different... 

    Designing gear-shift pattern for an electric vehicle to optimize energy consumption

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Vol. 11 , 2010 , pp. 837-846 ; ISBN: 9780791844489 Rahimi, M. A ; Salehi, R ; Alasty, A ; Sharif University of Technology
    Abstract
    In this paper optimization of energy consumption in an electric vehicle is presented. The main idea of this optimization is based on selecting the best gear level in driving the vehicle. Two algorithms for optimization are introduced which are based on fuzzy rules and fuzzy controllers. In first algorithm, fuzzy controller simulates energy consumption in different gear levels, and chooses the optimum gear level. While in second method, fuzzy controller detects the optimum gear level by measuring the vehicle's average speed and acceleration. To investigate the performance of these controllers, a model of TOSAN vehicle is developed and the controllers outputs are checked in simulation of TOSAN... 

    Using sliding mode control to adjust drum level of a boiler unit with time varying parameters

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis ; Vol. 5 , 2010 , pp. 29-33 ; ISBN: 9780791849194 Moradi, H ; Bakhtiari-Nejad, F ; Saffar-Avval, M ; Alasty, A ; Sharif University of Technology
    Abstract
    Stable control of water level of drum is of great importance for economic operation of power plant steam generator systems. In this paper, a linear model of the boiler unit with time varying parameters is used for simulation. Two transfer functions between drum water level (output variable) and feed-water and steam mass rates (input variables) are considered. Variation of model parameters may be arisen from disturbances affecting water level of drum, model uncertainties and parameter mismatch due to the variant operating conditions. To achieve a perfect tracking of the desired drum water level, two sliding mode controllers are designed separately. Results show that the designed controllers... 

    Stabilizing periodic orbits of chaotic systems using adaptive critic-based neurofuzzy controller

    , Article Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009 ; Vol. 4, Issue. PART C , 2009 , pp. 1759-1767 ; ISBN: 9780791849019 Honarvar, M ; Vatankhah, R ; Salarieh, H ; Boroushaki, M ; Alasty, A ; Sharif University of Technology
    Abstract
    In this paper design and evaluation of an adaptive critic- based neurofuzzy controller for the stabilizing periodic orbits of chaotic systems has been presented in detail. The main superiority of the proposed controller over previous analogous fuzzy logic controller design approaches, e.g., genetic fuzzy logic controller, is its online tuning characteristic and remarkable reduced amount of computations used for parameter adaptation, which makes it desirable for real time applications. Considering the simplicity of this controller and its independence from the system model, this control method has the advantage of online learning and control, and can be applied to a large variety of systems.... 

    Non-equilibrium model of gravity drainage in a single block

    , Article Journal of Porous Media ; Vol. 16, issue. 6 , 2013 , p. 559-571 ; ISSN: 1091028X Jahanbakhshi, S ; Ghazanfari, M. H ; Masihi, M ; Sharif University of Technology
    Abstract
    This work concerns with developing a non-equilibrium model of gravity drainage in a single block. The proposed model which considers both non-equilibrium effects of capillary pressure and relative permeabilities is used for prediction of oil recovery by gravity drainage from a single block. Close agreement observed between the model results and experimental data disclosed that the non-equilibrium assumption is completely reliable for modeling of gravity drainage. The results revealed that when the characteristic time of the saturation variation is comparable with the time required to establish capillary equilibrium, the non-equilibrium effects in gravity drainage must be considered. The... 

    Study on non-equilibrium effects during spontaneous imbibition

    , Article Energy and Fuels ; Vol. 25, issue. 7 , June , 2011 , p. 3053-3059 ; ISSN: 08870624 Mirzaei-Paiaman, A ; Masihi, M ; Standnes, D. C ; Sharif University of Technology
    Abstract
    Spontaneous imbibition of water into the matrix blocks because of capillary forces is an important recovery mechanism for oil recovery from naturally fractured reservoirs. In modeling this process, it has been assumed classically that local equilibrium is reached and, therefore, capillary pressure and relative permeability functions are only a function of water saturation, resulting in the appearance of the self-similarity condition. In some works published in the last 2 decades, it has, however, been claimed that local equilibrium is not reached in porous media, and therefore, opposite the classical local-equilibrium/self-similar approach, non-equilibrium effects should be taken into... 

    The semi-analytical modeling and simulation of the VAPEX process of ""Kuh-e-Mond"" heavy oil reservoir

    , Article Petroleum Science and Technology ; Vol. 29, issue. 5 , Oct , 2009 , p. 535-548 ; ISSN: 10916466 Rasti, F ; Masihi, M ; Kharrat, R ; Sharif University of Technology
    Abstract
    The vapor extraction process (or VAPEX) uses vaporized solvents injected into a horizontal well to form a vapor chamber within the reservoir. Vapor dissolves in the oil and enhances the oil production by decreasing the oil viscosity in heavy oil reservoirs. To evaluate the process we conduct a simulation study on an Iranian heavy oil reservoir called Kuh-e-Mond. In addition, a semi-analytical investigation of the VAPEX process has been performed. The idea is to perform VAPEX simulation for a laboratory model and find a methodology to compare the results of the simulator with the semi-analytical Butler's model. In particular, a semi-analytical dimensionless correlation for production rate... 

    Recovery improvement using water and gas injection scenarios

    , Article Petroleum Science and Technology ; Vol. 29, issue. 3 , Sep , 2009 , p. 290-300 ; ISSN: 10916466 Tafty, M. F ; Masihi, M ; Momeni, A ; Sharif University of Technology
    Abstract
    Water and miscible gas injection scenarios are considered in an Iranian oil reservoir for the purpose of recovery improvement. Firstly reservoir fluid modeling and modeling of a slim tube test were performed. Then, water alternating gas (WAG) injection was evaluated by optimizing the WAG half cycle and WAG ratio. Alternatively, hybrid WAG and separate injection of water and gas in the top and bottom of the reservoir were also investigated. The numerical simulation results showed that the optimum WAG, with half cycle of 1.5 years and WAG ratio of one, gave the highest recovery factor. Moreover, economic evaluation of these scenarios indicated that WAG had the highest net present value and was... 

    Iterative coupled experimental-numerical evaluation of dispersivity in fractured porous media using micromodel system

    , Article 73rd European Association of Geoscientists and Engineers Conference and Exhibition 2011: Unconventional Resources and the Role of Technology. Incorporating SPE EUROPEC 2011 ; Vol. 4, issue , 2011 , p. 2461-2466 Saidian, M ; Ghazanfari, M. H ; Masihi, M ; Kharrat, R ; Kianinejad, A ; Sharif University of Technology
    Abstract
    In this study a new iterative algorithm is developed to evaluate dispersivity in fracture and matrix, distinctly. The novelty of proposed algorithm is using mathematical model of solute transport in fractured porous media coupled with experimental data iteratively. A fractured glass micromodel has been designed to visualize the interaction between fracture and matrix during displacement of n-Decane by n-Octane at constant rate. The similarity between numerical and experimental model has been enhanced by reducing the assumptions which were applied in previous related studies. The iteration is performed on velocity components of solute transport and longitudinal as well as transversal... 

    New technique for calculation of well deliverability in gas condensate reservoir

    , Article Deep Gas Conference and Exhibition 2010, DGAS 2010 ; January , 2010 , p. 51-59 ; SPE Deep Gas Conference and Exhibition, 24-26 January, Manama, Bahrain Publication Date 2010 Gerami, S ; Sadeghi, A ; Masihi, M ; Sharif University of Technology
    Abstract
    Well deliverability is an important issue in forecasting the performance of many gas condensate reservoirs. Condensate accumulation near the wellbore can cause a significant reduction in productivity, even in reservoirs where the fluid is very lean. Generally, the well deliverability is affected by two pressure-drop sources due to depletion and condensate buildup. Recently Rapid spreadsheet tools have developed to evaluate the well performance using material balance equation for depletion and two-phase pseudo pressure integral for well inflow performance. Most of them account for the effects of negative inertia and positive coupling in the calculation of gas relative permeability. This paper... 

    Experimental and numerical study of the gas-gas separation efficiency in a Ranque-Hilsch vortex tube

    , Article Separation and Purification Technology ; Vol. 138, issue , Dec , 2014 , p. 177-185 Mohammadi, S ; Farhadi, F ; Sharif University of Technology
    Abstract
    A brass vortextube is used to carry out a series of experiments. The main objective of the present research is to investigate the separation performances of a vortex tube (VT) for a hydrocarbon mixture. Examination is also applied to study the effects of nozzle intakes number and cold fraction on the gas species separation at specific inlet pressure 236.37 kPa in a VT with two gas mixtures (LPG as a hydrocarbon mixture and LPG-N2). A two-dimensional computational fluid dynamic (CFD) model simulation of a VT is presented. CFD code after validation is also applied to investigate the role of cold fraction and nozzle intakes number on the gas species separation. The highly rotating flow field... 

    An investigation on the body force modeling in a lattice Boltzmann BGK simulation of generalized Newtonian fluids

    , Article Physica A: Statistical Mechanics and its Applications ; Vol. 415, issue , 2014 , pp. 315-332 Farnoush, S ; Manzari, M. T ; Sharif University of Technology
    Abstract
    Body force modeling is studied in the Generalized Newtonian (GN) fluid flow simulation using a single relaxation time lattice Boltzmann (LB) method. First, in a shear thickening Poiseuille flow, the necessity for studying body force modeling in the LB method is explained. Then, a parametric unified framework is constructed for the first time which is composed of a parametric LB model and its associated macroscopic dual equations in both steady state and transient simulations. This unified framework is used to compare the macroscopic behavior of different forcing models. Besides, using this unified framework, a new forcing model for steady state simulations is devised. Finally, by solving a... 

    Numerical simulation of high voltage electric pulse comminution of phosphate ore

    , Article International Journal of Mining Science and Technology ; Volume 25, Issue 3 , 2015 , Pages 473-478 ; ISSN: 20952686 Razavian, S. M ; Rezai, B ; Irannajad, M ; Ravanji, M. H ; Sharif University of Technology
    Abstract
    Numerical simulation of the electrical field distribution helps in-depth understanding of the mechanisms behind the responses and the benefits of the high voltage pulse comminution. The COMSOL Multiphysics package was used to numerically simulate the effect of ore compositions in this study. Regarding phosphate ore particles shape and composition, the effects of mineral composition, particle size, particle shape and electrodes distance were investigated on the electrical field intensity and distribution. The results show that the induced electrical field is significantly dependent on the electrical properties of minerals, the feed particle size and the location of conductive minerals in... 

    An investigation of the oxidative dehydrogenation of propane kinetics over a vanadium-graphene catalyst aiming at minimizing of the COx species

    , Article Chemical Engineering Journal ; Vol. 250 , 2014 , Pages 14-24 ; ISSN: 13858947 Fattahi, M ; Kazemeini, M ; Khorasheh, F ; Rashidi, A ; Sharif University of Technology
    Abstract
    Application of the DOE with the ANN in kinetic study of the ODHP was investigated.•The catalyst of vanadium/graphene synthesized through the hydrothermal technique.•The ANN and RSM's simulations were utilized to generate the extra data points.•Power law models and corresponding parameters determined to describe the reactions.•The optimization conducted in order to minimize the COx production. In the current investigation, an application of the design of experiments (DOE) along with the artificial neural networks (ANN) in a kinetic study of oxidative dehydrogenation of propane (ODHP) reaction over a synthesized vanadium-graphene catalyst at 400-500. °C presented aiming at minimizing the CO. x... 

    Kinetic modeling of oxidative dehydrogenation of propane (ODHP) over a vanadium-graphene catalyst: Application of the DOE and ANN methodologies

    , Article Journal of Industrial and Engineering Chemistry ; Vol. 20, issue. 4 , July , 2014 , p. 2236-2247 ; ISSN: 1226086X Fattahi, M ; Kazemeini, M ; Khorasheh, F ; Rashidi, A ; Sharif University of Technology
    Abstract
    In this research the application of design of experiment (DOE) coupled with the artificial neural networks (ANN) in kinetic study of oxidative dehydrogenation of propane (ODHP) over a vanadium-graphene catalyst at 400-500 °C and a method of data collection/fitting for the experiments were presented. The proposed reaction network composed of consecutive and simultaneous reactions with kinetics expressed by simple power law equations involving a total of 20 unknown parameters (10 reaction orders and 5 rate constants each expressed in terms of a pre-exponential factors and activation energies) determined through non-linear regression analysis. Because of the complex nature of the system, neural... 

    Interaction of 3D dewetting nanodroplets on homogeneous and chemically heterogeneous substrates

    , Article Journal of Physics Condensed Matter ; Vol. 26, Issue. 22 , 2014 ; ISSN: 09538984 Asgari, M ; Moosavi, A ; Sharif University of Technology
    Abstract
    Long-time interaction of dewetting nanodroplets is investigated using a long-wave approximation method. Although three-dimensional (3D) droplets evolution dynamics exhibits qualitative behavior analogous to two-dimensional (2D) dynamics, there is an extensive quantitative difference between them. 3D dynamics is substantially faster than 2D dynamics. This can be related to the larger curvature and, as a consequence, the larger Laplace pressure difference between the droplets in 3D systems. The influence of various chemical heterogeneities on the behavior of droplets has also been studied. In the case of gradient surfaces, it is shown how the gradient direction could change the dynamics. For a... 

    Numerical simulation of surfactant flooding in darcy scale flow

    , Article Petroleum Science and Technology ; Vol. 32, Issue. 11 , 2014 , Pages 1365-1374 ; ISSN: 10916466 Morshedi, S ; Foroughi, S ; Beiranvand, M. S ; Sharif University of Technology
    Abstract
    One of the methods that is used nowadays in enhanced oil recovery is surfactant flooding. The main mechanisms of surfactant flooding in reservoir consist of reduction of interfacial tension between water and oil and modification of rock wettability. In this study, the authors simulate the surfactant injection process in Darcy scale and in one-dimensional, multicomponent, multiphase state, and effects of physical phenomena such as adsorption, dispersion, convection, and exchange between fluids and solids are considered. Wettability alteration of reservoir rock due to presence of surfactant in injected fluid is detected in relative permeability and capillary pressure curves. First, the authors... 

    A core scale investigation of Asphaltene precipitation during simultaneous injection of oil and CO2: An experimental and simulation study

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Vol. 36, issue. 10 , Dec , 2014 , pp. 1077-1092 ; ISSN: 15567036 Bagherzadeh, H ; Rashtchian, D ; Ghazanfari, M. H ; Kharrat, R ; Sharif University of Technology
    Abstract
    Although CO2 injection significantly increases the amount of oil recovered, it can cause asphaltene deposition in oil reservoirs. Asphaltene deposition leads to formation damage, in which treatment is a costly and problematic operation. In this work, impact of asphaltene precipitation and deposition during CO2 injection are investigated for recombined oil both in sandstone and carbonate core samples through dynamic flow experiments. Injection of oil and CO2 was performed simultaneously. Then, pressure drops along the core were recorded continuously to estimate permeability reductions during the experiments. Online viscosity of injected fluid was measured by a designed capillary viscometer.... 

    Thermo-mechanical stress analysis of thermal barrier coating system considering thickness and roughness effects

    , Article Surface and Coatings Technology ; Vol. 243 , 2014 , pp. 91-99 ; ISSN: 02578972 Moridi, A ; Azadi, M ; Farrahi, G. H ; Sharif University of Technology
    Abstract
    Cast aluminium-silicon alloy, A356.0, is widely used in automotive and aerospace industries because of its outstanding mechanical, physical, and casting properties. Thermal barrier coatings can be applied to combustion chamber to reduce fuel consumption and pollutions and also improve fatigue life of components. The purpose of the present work is to simulate stress distribution of A356.0 under thermo-mechanical cyclic loadings, using a two-layer elastic-visco-plastic model of ABAQUS. The results of stress-strain hysteresis loop are validated by an out of phase thermo-mechanical fatigue test. Different thicknesses from 300 to 800. μm of top coat and also roughness of the interfaces are... 

    An approach to relate shot peening finite element simulation to the actual coverage

    , Article Surface and Coatings Technology ; Vol. 243 , 2014 , pp. 39-45 ; ISSN: 02578972 Gangaraj, S. M. H ; Guagliano, M ; Farrahi, G. H ; Sharif University of Technology
    Abstract
    Coverage is one of the most important parameters which is always used in practice to characterize a shot peening process. At the same time however, it is the most missing parameter in the finite element simulations of this process. This study aims to relate shot peening simulation to the actual coverage that is developed during the process. Accordingly, two important models from literature are re-simulated and their capability to predict an actual coverage is assessed. Results of this study illustrate that full coverage situation is not captured by these models. Thereafter, a random finite element simulation along with a step by step examination of the treated surface is adopted in order to...