Loading...
Search for: continuous-time-systems
0.007 seconds
Total 44 records

    Cooperative fixed-time/finite-time distributed robust optimization of multi-agent systems

    , Article Automatica ; Volume 142 , 2022 ; 00051098 (ISSN) Firouzbahrami, M ; Nobakhti, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    A new robust continuous-time optimization algorithm for distributed problems is presented which guarantees fixed-time convergence. The algorithm is based on a Lyapunov function technique and applied to a class of problems with coupled local cost functions. The algorithm applies a methodology with no expansion of the local variables. This reduces the computation complexities of the solution and improves scalability. Using an integral sliding mode strategy we incorporate effective disturbances rejection on the decision variables as experienced in a wide range of industrial applications. It is shown that the algorithm can easily be modified to a finite-time solution when evaluations of the... 

    Three-dimensional continuous-time integrated guidance and control design using model predictive control

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; 2022 ; 09544100 (ISSN) Sheikhbahaei, R ; Khankalantary, S ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    In this study, a novel three-dimensional continuous-time integrated guidance and control (IGC) scheme is presented. The proposed method is developed on the basis of generalized model predictive control (GMPC) approach and super-twisting extended state observer (STESO). The GMPC is used to generate the optimal closed form control law for the interceptor and the STESO is applied to estimate the maneuvering target lateral accelerations as well as the lumped disturbances. To the aim of IGC design, a six-degrees-of-freedom model based on the interceptor-target kinematics and interceptor dynamics is constructed. Afterward, the GMPC control law formulation for a nonlinear system exposed to... 

    Finite-time stabilisation of a class of time-varying nonlinear systems by a mixed event-based and continuous-time strategy

    , Article International Journal of Systems Science ; Volume 53, Issue 3 , 2022 , Pages 526-537 ; 00207721 (ISSN) Ghazisaeedi, H.R ; Tavazoei, M. S ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In this paper, a mixed event-triggered and continuous-time control method is proposed, which can guarantee finite-time stabilisation of the fixed point in a class of time-varying nonlinear systems. Benefiting from an event-triggered framework, which is constructed based on the indefinite Lyapunov theory, the communication/computation costs in the transient time can be reduced by using the proposed method. In a special case, this method is converted to a fully event-triggered control strategy for asymptotic stabilisation of the fixed point in the considered class of time-varying nonlinear systems. The effectiveness of the proposed method is verified by numerical simulations. © 2021 Informa UK... 

    Continuous-time/discrete-time (CT/DT) cascaded sigma-delta modulator for high resolution and wideband applications

    , Article WMED 2010 - 8th IEEE Workshop on Microelectronics and Electron Devices, 16 April 2010 through 16 April 2010 ; April , 2010 , Pages 33-36 ; 9781424465750 (ISBN) Mesgarani, A ; Sadeghi, K. H ; Ay, S. U ; Sharif University of Technology
    2010
    Abstract
    This paper reports transistor-level design of a new continuous-time (CT), discrete-time (DT) cascaded sigma delta modulator (SDM). The combination of a CT first stage and a DT second stage was utilized to realize a high speed, high resolution analog-to-digital converter (ADC). Power consumption of CT first stage is lowered by optimizing the gain coefficients of CT integrators in a feedforward topology. Moreover double sampling (CDS) was used in second stage integrators to further reduce power consumption. Proposed new SDM is simulated in 0.18μm CMOS technology and achieves 84dB dynamic range for a 10MHz signal bandwidth. Total analog power dissipation measured was 44mW