Loading...
Search for: controlled-drug-delivery
0.007 seconds
Total 114 records

    ZnO-incorporated polyvinylidene fluoride/poly(ε-caprolactone) nanocomposite scaffold with controlled release of dexamethasone for bone tissue engineering

    , Article Applied Physics A: Materials Science and Processing ; Volume 128, Issue 8 , 2022 ; 09478396 (ISSN) FotouhiArdakani, F ; Mohammadi, M ; Mashayekhan, S ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Here we report on the development of a hybrid nanofibrous scaffold made from polyvinylidene fluoride (PVDF) nanofibers embedding zinc oxide nanorods (ZnOns), and poly(ε-caprolactone) (PCL) nanofibers incorporating dexamethasone (DEX)-loaded chitosan nanoparticles using dual-electrospinning method. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and tensile analysis were carried out for physiochemical characterization of the scaffolds, followed by DEX release profile. In addition, an MTT assay was conducted to assess the viability of mouse bone marrow-derived mesenchymal stem cells (mBMSCs) on the hybrid nanofibrous scaffold.... 

    Investigation of cancer response to chemotherapy: a hybrid multi-scale mathematical and computational model of the tumor microenvironment

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 21, Issue 4 , 2022 , Pages 1233-1249 ; 16177959 (ISSN) Nikmaneshi, M. R ; Firoozabadi, B ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Tumor microenvironment (TME) is a multi-scale biological environment that can control tumor dynamics with many biomechanical and biochemical factors. Investigating the physiology of TME with a heterogeneous structure and abnormal functions not only can achieve a deeper understanding of tumor behavior but also can help develop more efficient anti-cancer strategies. In this work, we develop a hybrid multi-scale mathematical model of TME to simulate the progression of a three-dimensional tumor and elucidate its response to different chemotherapy approaches. The chemotherapy approaches include multiple low dose (MLD) of anti-cancer drug, maximum tolerated dose (MTD) of anti-cancer drug,... 

    Modeling of an ultrasound system in targeted drug delivery to abdominal aortic aneurysm: a patient-specificin silico study based on ligand-receptor binding

    , Article IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control ; Volume 69, Issue 3 , 2022 , Pages 967-974 ; 08853010 (ISSN) Shamloo, A ; Boroumand, A ; Ebrahimi, S ; Kalantarnia, F ; Maleki, S ; Moradi, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Targeted drug delivery methods have shown a significant impact on enhancing drug delivery efficiency and reducing drug side effects. While various stimuli have been used to promote the drug delivery process, applying ultrasound (US) waves to control drug particles through the human body, noninvasively, has drawn the scientist's attention. However, microcarriers delivery reaches the aneurysmal artery by US waves that exert volumetric forces on blood, and drug carriers, which can therefore affect blood flow patterns and movement pathways of drug carriers, have not yet been studied. In this study, we developed a 3-D patient-specific model of abdominal aortic aneurysm (AAA) to evaluate the... 

    Facile and tunable method for polymeric surface modification of magnetic nanoparticles via RAFT polymerization: Preparation, characterization, and drug release properties

    , Article European Polymer Journal ; Volume 167 , 2022 ; 00143057 (ISSN) Kohestanian, M ; Pourjavadi, A ; Keshavarzi, N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Herein, the facile and tunable technique for the preparation of novel multi-stimuli-responsive nanocomposites via RAFT polymerization for DOX delivery is reported. The influence of the molecular weight of pH- and thermo-sensitive poly (acrylic acid-co-NIPAM) (PNAx), as a macro-RAFT agent, on the nanocomposites size and drug release rate was investigated. The outcome of this study reveals that macro-RAFT agent with lower molecular weight can be attached to the surface of magnetic nanoparticles with higher content of polymeric layer than can macro-RAFT agent with higher molecular weight. Also, it was observed that the particle size, polymer grafting density, DOX loading capacity, and DOX... 

    Folic acid-adorned curcumin-loaded iron oxide nanoparticles for cervical cancer

    , Article ACS Applied Bio Materials ; Volume 5, Issue 3 , 2022 , Pages 1305-1318 ; 25766422 (ISSN) Ramezani Farani, M ; Azarian, M ; Heydari Sheikh Hossein, H ; Abdolvahabi, Z ; Mohammadi Abgarmi, Z ; Moradi, A ; Mousavi, S. M ; Ashrafizadeh, M ; Makvandi, P ; Saeb, M. R ; Rabiee, N ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Cancer is a deadly disease that has long plagued humans and has become more prevalent in recent years. The common treatment modalities for this disease have always faced many problems and complications, and this has led to the discovery of strategies for cancer diagnosis and treatment. The use of magnetic nanoparticles in the past two decades has had a significant impact on this. One of the objectives of the present study is to introduce the special properties of these nanoparticles and how they are structured to load and transport drugs to tumors. In this study, iron oxide (Fe3O4) nanoparticles with 6 nm sizes were coated with hyperbranched polyglycerol (HPG) and folic acid (FA). The... 

    In vitro study: synthesis and evaluation of Fe3O4/CQD magnetic/fluorescent nanocomposites for targeted drug delivery, MRI, and cancer cell labeling applications

    , Article Langmuir ; Volume 38, Issue 12 , 2022 , Pages 3804-3816 ; 07437463 (ISSN) Fattahi Nafchi, R ; Ahmadi, R ; Heydari, M ; Rahimipour, M. R ; Molaei, M. J ; Unsworth, L ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    In the present study, first, Fe3O4nanoparticles were functionalized using glutaric acid and then composited with CQDs. Doxorubicin (DOX) drug was loaded to evaluate the performance of the nanocomposite for targeted drug delivery applications. The XRD pattern confirmed the presence of characteristic peaks of CQDs and Fe3O4. In the FTIR spectrum, the presence of carboxyl functional groups on Fe3O4/CQDs was observed; DOX (positive charge) is loaded onto Fe3O4/CQDs (negative charge) by electrostatic absorption. FESEM and AFM images showed that the particle sizes of Fe3O4and CQDs were 23-75 and 1-3 nm, respectively. The hysteresis curves showed superparamagnetic properties for Fe3O4and Fe3O4/CQDs... 

    Particles in coronary circulation: A review on modelling for drug carrier design

    , Article Materials and Design ; Volume 216 , 2022 ; 02641275 (ISSN) Forouzandehmehr, M ; Ghoytasi, I ; Shamloo, A ; Ghosi, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Atherosclerotic plaques and thrombosis are chronic inflammatory complications and the main manifestations of cardiovascular diseases (CVD), the leading cause of death globally. Achieving non/minimal-invasive therapeutic means for these implications in the coronary network is vital and has become an interdisciplinary concern. Accordingly, smart drug delivery systems, specifically based on micro- and nanoparticles, as a promising method to offer non/minimal-invasive therapeutic mechanisms are under active research. Notably, computational models enable us to study, design, and predict treatment strategies based on smart drug delivery systems with less time and cost compared with conventional... 

    Green metal-organic frameworks (MOFs) for biomedical applications

    , Article Microporous and Mesoporous Materials ; Volume 335 , 2022 ; 13871811 (ISSN) Rabiee, N ; Atarod, M ; Tavakolizadeh, M ; Asgari, S ; Rezaei, M ; Akhavan, O ; Pourjavadi, A ; Jouyandeh, M ; Lima, E. C ; Hamed Mashhadzadeh, A ; Ehsani, A ; Ahmadi, S ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Metal-organic frameworks (MOFs), known as highly ordered crystalline hybrid structures, are the products of coordination polymerization of transition metals and organic ligands. MOFs are best known for their extensive specific surface area, hierarchically porous and tailorable 1D, 2D, or 3D micro-and nanostructure, and acceptable biocompatibility. Because of the multiplicity of metallic and organic units used in MOFs synthesis, tailor-made MOFs can be synthesized to be served as building blocks of advanced biological materials and systems. Recently, synthesis of green MOFs has received much more attention for nanobiomedicine usage. We review herein synthesis and biomedical application of... 

    Droplet-based microfluidics in biomedical applications

    , Article Biofabrication ; Volume 14, Issue 2 , 2022 ; 17585082 (ISSN) Amirifar, L ; Besanjideh, M ; Nasiri, R ; Shamloo, A ; Nasrollahi, F ; De Barros, N. R ; Davoodi, E ; Erdem, A ; Mahmoodi, M ; Hosseini, V ; Montazerian, H ; Jahangiry, J ; Darabi, M.A ; Haghniaz, R ; Dokmeci, M.R ; Annabi, N ; Ahadian, S ; Khademhosseini, A ; Sharif University of Technology
    IOP Publishing Ltd  2022
    Abstract
    Droplet-based microfluidic systems have been employed to manipulate discrete fluid volumes with immiscible phases. Creating the fluid droplets at microscale has led to a paradigm shift in mixing, sorting, encapsulation, sensing, and designing high throughput devices for biomedical applications. Droplet microfluidics has opened many opportunities in microparticle synthesis, molecular detection, diagnostics, drug delivery, and cell biology. In the present review, we first introduce standard methods for droplet generation (i.e. passive and active methods) and discuss the latest examples of emulsification and particle synthesis approaches enabled by microfluidic platforms. Then, the applications... 

    Targeted drug delivery of magnetic microbubble for abdominal aortic aneurysm: an in silico study

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 21, Issue 2 , 2022 , Pages 735-753 ; 16177959 (ISSN) Shamloo, A ; Ebrahimi, S ; Ghorbani, G ; Alishiri, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Targeted drug delivery (TDD) to abdominal aortic aneurysm (AAA) using a controlled and efficient approach has recently been a significant challenge. In this study, by using magnetic microbubbles (MMBs) under a magnetic field, we investigated the MMBs performance in TDD to AAA based on the amount of surface density of MMBs (SDMM) adhered to the AAA lumen. The results showed that among the types of MMBs studied in the presence of the magnetic field, micromarkers are the best type of microbubble with a −50 % increase in SDMM adhered to the critical area of AAA. The results show that applying a magnetic field causes the amount of SDMM adhered to the whole area of AAA to increase −1.54 times... 

    Multifunctional tetracycline-loaded silica-coated core-shell magnetic nanoparticles: antibacterial, antibiofilm, and cytotoxic activities

    , Article ACS Applied Bio Materials ; Volume 5, Issue 4 , 2022 , Pages 1731-1743 ; 25766422 (ISSN) Mazraeh, M ; Eshrati Yeganeh, F ; Yousefi, M ; Baniyaghoob, S ; Farasati Far, B ; Akbarzadeh, I ; Bigham, A ; Ashrafizadeh, M ; Rabiee, N ; Makvandi, P ; Saeb, M. R ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    In the current study, the physicochemical and biological properties of tetracycline-loaded core-shell nanoparticles (Tet/Ni0.5Co0.5Fe2O4/SiO2 and Tet/CoFe2O4/SiO2) were investigated. The antibacterial activity of nanoparticles alone and in combination with tetracycline was investigated against a number of Gram-positive and Gram-negative bacteria for determining minimum inhibitory concentration (MIC) values. The MIC of Tet/Ni0.5Co0.5Fe2O4/SiO2 nanoparticles turned out to be significantly higher than that of Tet/CoFe2O4/SiO2 nanoparticles. Furthermore, Tet/Ni0.5Co0.5Fe2O4/SiO2 nanoparticles exhibited potent antibiofilm activity against pathogenic bacteria compared to Tet/CoFe2O4/SiO2... 

    Gingerol/letrozole-loaded mesoporous silica nanoparticles for breast cancer therapy: In-silico and in-vitro studies

    , Article Microporous and Mesoporous Materials ; Volume 337 , 2022 ; 13871811 (ISSN) Akbarzadeh, I ; Saremi Poor, A ; Khodarahmi, M ; Abdihaji, M ; Moammeri, A ; Jafari, S ; Salehi Moghaddam, Z ; Seif, M ; Moghtaderi, M ; Lalami, Z. A ; Heydari, M ; Adelnia, H ; Farasati Far, B ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this study, in-silico properties of Gingerol (Gin) and Letrozole (Let), as two potential anti-cancer drugs, were investigated and some significant ADME drawbacks were predicted. Accordingly, to address the drawbacks, mesoporous silica nanoparticles (MSNs) were prepared, functionalized with zinc, amine, and graphene oxide (GO) (MZNG), and employed for loading and delivery of the both to breast cancer cells in-vitro. Biophysical analysis showed that Let and Gin-loaded MZNGs have spherical structure with a mean diameter of ∼210 nm. The MZNGs provided high entrapment efficiency of Let and Gin with a pH-sensitive sustained release profile. The cytotoxicity assay demonstrated that loading of... 

    Evaluation of anti-cancer and anti-metastatic effects of folate-PEGylated niosomes for co-delivery of letrozole and ascorbic acid on breast cancer cells

    , Article Molecular Systems Design and Engineering ; Volume 7, Issue 9 , 2022 , Pages 1102-1118 ; 20589689 (ISSN) Bourbour, M ; Khayam, N ; Noorbazargan, H ; Tavakkoli Yaraki, M ; Asghari Lalami, Z ; Akbarzadeh, I ; Eshrati Yeganeh, F ; Dolatabadi, A ; Mirzaei Rad, F ; Tan, Y. N ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Fighting with cancer requires the delivery of different therapeutics to the target cancerous cells by taking advantage of the synergistic effects of complementary medicine. Herein, we present a folate-PEGylated niosome as an efficient nanocarrier for targeted co-delivery of hydrophobic letrozole (L) and hydrophilic ascorbic acid (A) to breast cancer cells. The formulation of the niosomal nanocarrier was optimized by varying the ratio of cholesterol and surfactants to maximize the drug loading and minimize the size of nanocarriers. The optimum drug carriers were further functionalized with folate-PEG molecules to enhance the efficiency of drug delivery to the breast cancer cells and prevent... 

    Engineered hyaluronic acid-decorated niosomal nanoparticles for controlled and targeted delivery of epirubicin to treat breast cancer

    , Article Materials Today Bio ; Volume 16 , 2022 ; 25900064 (ISSN) Mansoori Kermani, A ; Khalighi, S ; Akbarzadeh, I ; Niavol, F. R ; Motasadizadeh, H ; Mahdieh, A ; Jahed, V ; Abdinezhad, M ; Rahbariasr, N ; Hosseini, M ; Ahmadkhani, N ; Panahi, B ; Fatahi, Y ; Mozafari, M ; Kumar, A. P ; Mostafavi, E ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Targeted drug delivery systems using nanocarriers offer a versatile platform for breast cancer treatment; however, a robust, CD44-targeted niosomal formulation has not been developed and deeply studied (both in vitro and in vivo) yet. Here, an optimized system of epirubicin (Epi)-loaded niosomal nanoparticles (Nio) coated with hyaluronic acid (HA) has been engineered for targeting breast cancer cells. The nanoformulation was first optimized (based on size, polydispersity index, and entrapment efficiency); then, we characterized the morphology, stability, and release behavior of the nanoparticles. Epirubicin release from the HA-coated system (Epi-Nio-HA) showed a 21% (acidic buffer) and 20%...