Loading...
Search for: controlled-study
0.016 seconds
Total 652 records

    Photocatalytic TiO2@MIL-88A (Fe)/polyacrylonitrile mixed matrix membranes: Characterization, anti-fouling properties, and performance on the removal of natural organic matter

    , Article Chemosphere ; Volume 302 , 2022 ; 00456535 (ISSN) Salehian, S ; Mehdipour, M. H ; Fotovat, F ; Mousavi, S. A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Photocatalytic membrane reactors (PMRs), coupling photocatalysts and membranes in a single system, have shown a considerable potential to reduce membrane fouling, which is one of the major drawbacks of using membranes to treat water and wastewater. In this study, the visible light-activated photocatalysts were incorporated into the polyacrylonitrile (PAN) casting solution to synthesize the photocatalytic composite membranes. The physicochemical properties and the morphology of the membranes and photocatalysts were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction analysis (XRD), ultraviolet–visible diffuse reflectance... 

    Cardiac contraction motion compensation in gated myocardial perfusion SPECT: a comparative study

    , Article Physica Medica ; Volume 49 , 2018 , Pages 77-82 ; 11201797 (ISSN) Salehi, N ; Rahmim, A ; Fatemizadeh, E ; Akbarzadeh, A ; Farahani, M. H ; Farzanefar, S ; Ay, M. R ; Sharif University of Technology
    Associazione Italiana di Fisica Medica  2018
    Abstract
    Introduction: Cardiac contraction significantly degrades quality and quantitative accuracy of gated myocardial perfusion SPECT (MPS) images. In this study, we aimed to explore different techniques in motion-compensated temporal processing of MPS images and their impact on image quality and quantitative accuracy. Material and method: 50 patients without known heart condition underwent gated MPS. 3D motion compensation methods using Motion Freezing by Cedars Sinai (MF), Log-domain Diffeomorphic Demons (LDD) and Free-Form Deformation (FFD) were applied to warp all image phases to fit the end-diastolic (ED) phase. Afterwards, myocardial wall thickness, myocardial to blood pool contrast, and... 

    Effect of dual-tasking on postural control in subjects with nonspecific low back pain

    , Article Spine ; Volume 34, Issue 13 , 2009 , Pages 1415-1421 ; 03622436 (ISSN) Salavati, M ; Mazaheri, M ; Negahban, H ; Ebrahimi, I ; Jafari, A. H ; Kazemnejad, A ; Parnianpour, M ; Sharif University of Technology
    2009
    Abstract
    STUDY DESIGN. Three factors mixed-design with 1 between-subject and 2 within-subject factors. OBJECTIVE. To compare the main effects and interactions of postural and cognitive difficulty on quiet stance between subjects with and without nonspecific low back pain (LBP). SUMMARY OF BACKGROUND DATA. The interference between postural control and cognitive tasks depends on factors such as sensorimotor/cognitive integrity. Changes in peripheral sensory and muscular systems as well as cognitive processes have been observed in LBP patients. It was hypothesized that the effect of cognitive task on postural performance might be different in subjects with nonspecific LBP as compared with healthy... 

    Investigation of cervical spine curvature in females with postural neck pain

    , Article Journal of Zanjan University of Medical Sciences and Health Services ; Volume 25, Issue 110 , 2017 , Pages 110-119 ; 16069366 (ISSN) Salahzadeh, Z ; Maroufi, N ; Ahmadi, A ; Behtash, H ; Hazhir Sahneh, S ; Parnianpour, M ; Sharif University of Technology
    Zanjan University of Medical Sciences and Health Services  2017
    Abstract
    Background and Objective: Changes in the cervical spine curvature leads to increased shear force and compression stress on cervical spine and axial loading in different cervical segments. The objective of this study was to compare the general and segmental curvature in the upper and lower cervical spine of women with postural neck pain and Forward Head Posture (FHP), women without neck pain but with FHP and healthy women. Material and Methods: 45 women were divided into three groups: 15 women with postural neck pain and FHP, 15 women without neck pain but with FHP and 15 healthy women. Photography was used to assess neck posture while cervical spine curvature was measured using fluoroscopy... 

    Comparison between Lagrangian and Eulerian approaches in predicting motion of micron-sized particles in laminar flows

    , Article Atmospheric Environment ; Vol. 89, issue , 2014 , Pages 199-206 ; ISSN: 13522310 Saidi, M. S ; Rismanian, M ; Monjezi, M ; Zendehbad, M ; Fatehiboroujeni, S ; Sharif University of Technology
    Abstract
    Modeling the behavior of suspended particles in gaseous phase is important for diverse reasons; e.g. aerosol is usually the main subject of CFD simulations in clean rooms. Additionally, to determine the rate and sites of deposition of particles suspended in inhaled air, the motion of the particles should be predicted in lung airways. Meanwhile there are two basically different approaches to simulate the behavior of particles suspension, Lagrangian and Eulerian approaches. This study compares the results of these two approaches on simulating the same problem. An in-house particle tracking code was developed to simulate the motion of particles with Lagrangian approach. In order to simulate the... 

    Cold atmospheric plasma modification and electrical conductivity induction in gelatin/polyvinylidene fluoride nanofibers for neural tissue engineering

    , Article Artificial Organs ; Volume 46, Issue 8 , 2022 , Pages 1504-1521 ; 0160564X (ISSN) Sahrayi, H ; Hosseini, E ; Ramazani Saadatabadi, A ; Atyabi, S ; Bakhshandeh, H ; Mohamadali, M ; Aidun, A ; Farasati Far, B ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Background: This research follows some investigations through neural tissue engineering, including fabrication, surface treatment, and evaluation of novel self-stimuli conductive biocompatible and degradable nanocomposite scaffolds. Methods: Gelatin as a biobased material and polyvinylidene fluoride (PVDF) as a mechanical, electrical, and piezoelectric improvement agent were co-electrospun. In addition, polyaniline/graphene (PAG) nanoparticles were synthesized and added to gelatin solutions in different percentages to induce electrical conductivity. After obtaining optimum PAG percentage, cold atmospheric plasma (CAP) treatment was applied over the best samples by different plasma variable... 

    Co-delivery of letrozole and cyclophosphamide via folic acid-decorated nanoniosomes for breast cancer therapy: Synergic effect, augmentation of cytotoxicity, and apoptosis gene expression

    , Article Pharmaceuticals ; Volume 15, Issue 1 , 2022 ; 14248247 (ISSN) Sahrayi, H ; Hosseini, E ; Karimifard, S ; Khayam, N ; Meybodi, S. M ; Amiri, S ; Bourbour, M ; Far, B. F ; Akbarzadeh, I ; Bhia, M ; Hoskins, C ; Chaiyasut, C ; Sharif University of Technology
    MDPI  2022
    Abstract
    Breast cancer is one of the most prevalent causes of cancer mortality in women. In order to increase patient prognosis and survival rates, new technologies are urgently required to deliver therapeutics in a more effective and efficient manner. Niosome nanoparticles have been recently employed as therapeutic platforms capable of loading and carrying drugs within their core for both mono and combination therapy. Here, niosome-based nanoscale carriers were investigated as a targeted delivery system for breast cancer therapy. The platform developed consists of niosomes loaded with letrozole and cyclophosphamide (NLC) and surface-functionalized with a folic-acidtargeting moiety (NLCPFA). Drug... 

    Study potential of indigenous pseudomonas aeruginosa and bacillus subtilis in bioremediation of diesel-contaminated water

    , Article Water, Air, and Soil Pollution ; Volume 228, Issue 1 , 2017 ; 00496979 (ISSN) Safdari, M. S ; Kariminia, H. R ; Ghobadi Nejad, Z ; Fletcher, T. H ; Sharif University of Technology
    Abstract
    Petroleum products which are used in a wide variety of industries as energy sources and raw materials have become a major concern in pollution of terrestrial and marine environments. The purpose of this study was to assess the potential of indigenous microbial isolates for degradation of diesel fuel. Two most proficient bacterial strains among five isolated strains from polluted soil of an industrial refinery were studied. The isolates then were identified as Pseudomonas aeruginosa and Bacillus subtilis using biochemical tests and 16S rRNA gene sequence analyses. P. aeruginosa showed higher biodegradation efficiency than B. subtilis in shaking flask containing diesel-contaminated water. P.... 

    Development of bioreactors for comparative study of natural attenuation, biostimulation, and bioaugmentation of petroleum-hydrocarbon contaminated soil

    , Article Journal of Hazardous Materials ; Volume 342 , 2018 , Pages 270-278 ; 03043894 (ISSN) Safdari, M. S ; Kariminia, H. R ; Rahmati, M ; Fazlollahi, F ; Polasko, A ; Mahendra, S ; Wilding, W. V ; Fletcher, T. H ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Bioremediation of soil and groundwater sites contaminated by petroleum hydrocarbons is known as a technically viable, cost-effective, and environmentally sustainable technology. The purpose of this study is to investigate laboratory-scale bioremediation of petroleum-hydrocarbon contaminated soil through development of eight bioreactors, two bioreactors for each bioremediation mode. The modes were: (1) natural attenuation (NA); (2) biostimulation (BS) with oxygen and nutrients; (3) bioaugmentation (BA) with hydrocarbon degrading isolates; (4) a combination of biostimulation and bioaugmentation (BS-BA). Total petroleum hydrocarbons (TPH) mass balance over the bioreactors showed about 2% of... 

    Multilayered mesoporous composite nanostructures for highly sensitive label-free quantification of cardiac troponin-i

    , Article Biosensors ; Volume 12, Issue 5 , 2022 ; 20796374 (ISSN) Saeidi, M ; Amidian, M. A ; Sheybanikashani, S ; Mahdavi, H ; Alimohammadi, H ; Syedmoradi, L ; Mohandes, F ; Zarrabi, A ; Tamjid, E ; Omidfar, K ; Simchi, A ; Sharif University of Technology
    MDPI  2022
    Abstract
    Cardiac troponin-I (cTnI) is a well-known biomarker for the diagnosis and control of acute myocardial infarction in clinical practice. To improve the accuracy and reliability of cTnI electrochemical immunosensors, we propose a multilayer nanostructure consisting of Fe3O4-COOH labeled anti-cTnI monoclonal antibody (Fe3O4-COOH-Ab1 ) and anti-cTnI polyclonal antibody (Ab2 ) conjugated on Au-Ag nanoparticles (NPs) decorated on a metal–organic framework (Au-Ag@ZIF-67-Ab2 ). In this design, Fe3O4-COOH was used for separation of cTnI in specimens and signal amplification, hierarchical porous ZIF-67 extremely enhanced the specific surface area, and Au-Ag NPs synergically promoted the conductivity... 

    Fluid-structure interaction simulation of blood flow and cerebral aneurysm: effect of partly blocked vessel

    , Article Journal of Vascular Research ; Volume 56, Issue 6 , 2019 , Pages 296-307 ; 10181172 (ISSN) Saeedi, M ; Shamloo, A ; Mohammadi, A ; Sharif University of Technology
    S. Karger AG  2019
    Abstract
    In this study, using fluid-structure interaction (FSI), 3-dimensional blood flow in an aneurysm in the circle of Willis-which is located in the middle cerebral artery (MCA)-has been simulated. The purpose of this study is to evaluate the effect of a partly blocked vessel on an aneurysm. To achieve this purpose, two cases have been investigated using the FSI method: in the first case, an ideal geometry of aneurysm in the MCA has been simulated; in the second case, modeling is performed for an ideal geometry of the aneurysm in the MCA with a partly blocked vessel. All boundary conditions, properties and modeling methods were considered the same for both cases. The only difference between the... 

    Over-Expression of immune-related lncrnas in inflammatory demyelinating polyradiculoneuropathies

    , Article Journal of Molecular Neuroscience ; Volume 71, Issue 5 , 2021 , Pages 991-998 ; 08958696 (ISSN) Sadeghpour, S ; Ghafouri-Fard, S ; Mazdeh, M ; Nicknafs, F ; Nazer, N ; Sayad, A ; Taheri, M ; Sharif University of Technology
    Humana Press Inc  2021
    Abstract
    Long non-coding RNAs (lncRNAs) have crucial roles in the pathogenesis of immune-related disorders. However, their role in the pathobiology of inflammatory demyelinating polyradiculoneuropathies remains unclear. In the current study, we measured peripheral expression of four lncRNAs, namely TUG1, FAS-AS1, NEAT1, and GAS5, in patients with acute/chronic inflammatory demyelinating polyradiculoneuropathies (AIDP/CIDP) compared with healthy subjects. Notably, all lncRNAs were over-expressed in patients compared with controls (P < 0.0001 for all lncRNAs). When assessing their expressions in AIDP and CIDP groups separately, TUG1 and NEAT1 were up-regulated in both patient groups compared with... 

    Trajectory of human movement during sit to stand: A new modeling approach based on movement decomposition and multi-phase cost function

    , Article Experimental Brain Research ; Volume 229, Issue 2 , 2013 , Pages 221-234 ; 00144819 (ISSN) Sadeghi, M ; Andani, M. E ; Bahrami, F ; Parnianpour, M ; Sharif University of Technology
    2013
    Abstract
    The purpose of this work is to develop a computational model to describe the task of sit to stand (STS). STS is an important movement skill which is frequently performed in human daily activities, but has rarely been studied from the perspective of optimization principles. In this study, we compared the recorded trajectories of STS with the trajectories generated by several conventional optimization-based models (i.e., minimum torque, minimum torque change and kinetic energy cost models) and also with the trajectories produced by a novel multi-phase cost model (MPCM). In the MPCM, we suggested that any complex task, such as STS, is decomposable into successive motion phases, so that each... 

    Dictionary learning with low mutual coherence constraint

    , Article Neurocomputing ; Volume 407 , 2020 , Pages 163-174 Sadeghi, M ; Babaie Zadeh, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    This paper presents efficient algorithms for learning low-coherence dictionaries. First, a new algorithm based on proximal methods is proposed to solve the dictionary learning (DL) problem regularized with the mutual coherence of dictionary. This is unlike the previous approaches that solve a regularized problem where an approximate incoherence promoting term, instead of the mutual coherence, is used to encourage low-coherency. Then, a new solver is proposed for constrained low-coherence DL problem, i.e., a DL problem with an explicit constraint on the mutual coherence of the dictionary. As opposed to current methods, which follow a suboptimal two-step approach, the new algorithm directly... 

    Shape-controlled silver NPs for shape-dependent biological activities

    , Article Micro and Nano Letters ; Volume 12, Issue 9 , 2017 , Pages 647-651 ; 17500443 (ISSN) Sadeghi, F ; Yazdanpanah, A ; Abrishamkar, A ; Moztarzadeh, F ; Ramedani, A ; Pouraghaie, S ; Shirinzadeh, H ; Samadikuchaksaraei, A ; Chauhan, N. P. S ; Hopkinson, L ; Sefat, F ; Mozafari, M ; Sharif University of Technology
    Abstract
    The most important issue during synthesis of nanoparticles (NPs) is to avoid particle agglomeration and adhesion. There have been several attempts to use special substances such as organic surfactants, polymers and stable ligands for this purpose. In this study, silver NPs were synthesised with and without gelatin macromolecules, as a green natural biopolymer, which resulted in NPs with varying shapes and sizes. The effect of morphological characteristics on the antibacterial and antifungal properties of the synthesised NPs were studied, by comparing Gram-negative (Escherichia coli) versus Gram-positive (Staphylococcus aureus) bacteria as well as fungi (Candida albicans) by calculation of... 

    Fabrication and evaluation of bioresorbable scaffolds for interventional cardiology application with sufficient drug release

    , Article Iranian Journal of Basic Medical Sciences ; Volume 25, Issue 3 , 2022 , Pages 372-382 ; 20083866 (ISSN) Sadeghabadi, A ; Sadrnezhaad, S. K ; Asefnejad, A ; Nemati, N. H ; Sharif University of Technology
    Mashhad University of Medical Sciences  2022
    Abstract
    Objective(s): Bioresorbable scaffolds have been advocated as the new generation in interventional cardiology because they could provide temporary scaffolds and then disappear with resorption. Although, the available stents in clinical trials exhibited biosafety, efficacy, no death, and no apparent thrombosis, Mg-substrate degradation on drug release has not been investigated. Materials and Methods: Therefore, more research has been needed to legitimize the replacement of current stents with Mg-based stents. UV-Vis spectrophotometer, scanning electron microscope (SEM), X-ray diffraction (XRD), pH measurement, H2 evolution, and corrosion tests determined the change in hybrid properties and... 

    Estimation of nitrogen content in cucumber plant (Cucumis sativus L.) leaves using hyperspectral imaging data with neural network and partial least squares regressions

    , Article Chemometrics and Intelligent Laboratory Systems ; Volume 217 , 2021 ; 01697439 (ISSN) Sabzi, S ; Pourdarbani, R ; Rohban, M. H ; García Mateos, G ; Arribas, J. I ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In recent years, farmers have often mistakenly resorted to overuse of chemical fertilizers to increase crop yield. However, excessive consumption of fertilizers might lead to severe food poisoning. If nutritional deficiencies are detected early, it can help farmers to design better fertigation practices before the problem becomes unsolvable. The aim of this study is to predict the amount of nitrogen (N) content (mg l−1) in cucumber (Cucumis sativus L., var. Super Arshiya-F1) plant leaves using hyperspectral imaging (HSI) techniques and three different regression methods: a hybrid artificial neural networks-particle swarm optimization (ANN-PSO); partial least squares regression (PLSR); and... 

    Highly sensitive voltammetric determination of lamotrigine at highly oriented pyrolytic graphite electrode

    , Article Bioelectrochemistry ; Volume 84 , 2012 , Pages 38-43 ; 15675394 (ISSN) Saberi, R. S ; Shahrokhian, S ; Sharif University of Technology
    2012
    Abstract
    The electrochemical behavior of lamotrigine (LMT) at the pyrolytic graphite electrode (PGE) is investigated in detail by the means of cyclic voltammetry. During the electrochemical reduction of LMT, an irreversible cathodic peak appeared. Cyclic voltammetric studies indicated that the reduction process has an irreversible and adsorption-like behavior. The observed reduction peak is attributed to a two-electron process referring to the reduction of azo group. The electrode showed an excellent electrochemical activity toward the electro-reduction of LMT, leading to a significant improvement in sensitivity as compared to the glassy carbon electrode. The results of electrochemical impedance... 

    Fluid particle diffusion through high-hematocrit blood flow within a capillary tube

    , Article Journal of Biomechanics ; Volume 44, Issue 1 , Jan , 2011 , Pages 170-175 ; 00219290 (ISSN) Saadatmand, M ; Ishikawa, T ; Matsuki, N ; Jafar Abdekhodaie, M ; Imai, Y ; Ueno, H ; Yamaguchi, T ; Sharif University of Technology
    2011
    Abstract
    Fluid particle diffusion through blood flow within a capillary tube is an important phenomenon to understand, especially for studies in mass transport in the microcirculation as well as in solving technical issues involved in mixing in biomedical microdevices. In this paper, the spreading of tracer particles through up to 20% hematocrit blood, flowing in a capillary tube, was studied using a confocal micro-PTV system. We tracked hundreds of particles in high-hematocrit blood and measured the radial dispersion coefficient. Results yielded significant enhancement of the particle diffusion, due to a micron-scale flow-field generated by red blood cell motions. By increasing the flow rate, the... 

    Simulation of low density lipoprotein (LDL) permeation into multilayer coronary arterial wall: interactive effects of wall shear stress and fluid-structure interaction in hypertension

    , Article Journal of Biomechanics ; Volume 67 , 2018 , Pages 114-122 ; 00219290 (ISSN) Roustaei, M ; Nikmaneshi, M. R ; Firoozabadi, B ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Due to increased atherosclerosis-caused mortality, identification of its genesis and development is of great importance. Although, key factors of the origin of the disease is still unknown, it is widely believed that cholesterol particle penetration and accumulation in arterial wall is mainly responsible for further wall thickening and decreased rate of blood flow during a gradual progression. To date, various effective components are recognized whose simultaneous consideration would lead to a more accurate approximation of Low Density Lipoprotein (LDL) distribution within the wall. In this research, a multilayer Fluid-Structure Interaction (FSI) model is studied to simulate the penetration...