Loading...
Search for: copper-oxides
0.007 seconds
Total 129 records

    All metal organic deposited high-Tc superconducting transition edge bolometer on yttria-stabilized zirconia substrate

    , Article Journal of Superconductivity and Novel Magnetism ; Volume 30, Issue 7 , 2017 , Pages 1981-1986 ; 15571939 (ISSN) Mohajeri, R ; Aparecido Opata, Y ; Wulff, A. C ; Grivel, J. C ; Fardmanesh, M ; Sharif University of Technology
    Abstract
    We report on the results of a YBa2Cu3O7−x (YBCO) superconductive transition edge bolometer (TEB) fabricated on a Ce0.9La0.1O2−7 (CLO) buffered single crystalline yttria-stabilized zirconia (YSZ) substrate. Metal organic deposition was used for the fabrication of both the YBCO thin film as well as CLO buffer layer, while standard photolithography was applied for TEB preparation. YBCO thin film properties were analysed using scanning electron microscopy (SEM), X-ray diffraction (XRD), AC susceptibility and resistance versus temperature measurements. Optical response of the TEB in terms of voltage amplitude and phase was analysed and measured through four-probe technique in a liquid nitrogen... 

    Integrated monolayer planar flux transformer and resonator tank circuit for high-$t-{c}$ rf-squid magnetometer

    , Article IEEE Transactions on Applied Superconductivity ; Volume 27, Issue 4 , 2017 ; 10518223 (ISSN) Shanehsazzadeh, F ; Jabbari, T ; Qaderi, F ; Fardmanesh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    The authors propose a new design for monolayer superconducting planar flux transformer integrated with a coplanar resonator serving as a gigahertz range tank circuit for high-Tc rf-SQUID magnetometers. Based on the proposed design, which is optimized using the finite element method, the transformer-resonator configuration is made of 200-nm-thick monolayer YBCO film on a crystalline LaAlO3 substrate. In this optimized design, the SQUID magnetometer is coupled through flip-chip configuration with the configuration providing high coupling coefficient between the devices. The design permits coupling of the rf signals to the SQUID efficiently, whereas the transformer is designed to couple the dc... 

    Facile synthesis of CuO@PbS core/shell nanowire arrays

    , Article Materials Letters ; Volume 193 , 2017 , Pages 259-262 ; 0167577X (ISSN) Farshidi, H ; Youzbashi, A. A ; Heidari Saani, M ; Rashidi, A ; Kazemzadeh, A ; Kiani, F ; Sharif University of Technology
    Abstract
    Nanowire arrays of copper oxide were first grown vertically using simple and cost effective thermal oxidation method on a copper foil. Subsequently, in order to deposit and grow PbS nanocyrstalline thin films on CuO NWs by utilizing the chemical bath deposition technique, these arrays were immersed as the substrate in the reaction solution consisting of Pb(NO3)2, (NH2)2CS and NaOH. The final products were characterized in detail by which the formation of uniform, unique arrays of CuO@PbS core–shell NWs was confirmed. Due to the nature of methods employed in synthesis of this hetero structure, the tuning of core and shell size and consequently properties of the novel structure is easily... 

    Tuning composition of electrospun ZnO/CuO nanofibers: toward controllable and efficient solar photocatalytic degradation of organic pollutants

    , Article Journal of Physical Chemistry C ; Volume 121, Issue 6 , 2017 , Pages 3327-3338 ; 19327447 (ISSN) Naseri, A ; Samadi, M ; Mahmoodi, N. M ; Pourjavadi, A ; Mehdipour, H ; Moshfegh, A. Z ; Sharif University of Technology
    American Chemical Society  2017
    Abstract
    ZnO/CuO nanofibers, with different CuO concentrations, were fabricated by one-step electrospinning of the polymer precursor and annealing in air. Scanning electron microscopy (SEM) showed smooth and beadless morphology for the synthesized nanofibers, while X-ray diffraction (XRD) analysis revealed formation of hexagonal and monoclinic crystalline structure phases for ZnO and CuO nanofibers, respectively. X-ray photoelectron spectroscopy (XPS) analysis confirmed the presence of CuO on the surface of ZnO nanofibers. For further confirming the formation of chemical bonds, Fourier transform infrared (FT-IR) spectroscopy was employed. The effect of Cu contents in the overall electronic band... 

    Origin of working temperature in H2S sensing process of SnO2-CuO thin bilayer: A theoretical macroscopic approach

    , Article Sensors and Actuators, B: Chemical ; Volume 252 , 2017 , Pages 944-950 ; 09254005 (ISSN) Boroun, Z ; Ghorbani, M ; Mohammadpour, R ; Moosavi, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Resistive sensors composed of SnO2 and CuO, are known to be highly efficient in detection of detrimental H2S gas in terms of sensitivity, selectivity and speed. Recently, dependency of electrical response of the sensor toward H2S gas concentration has been related to the selective mechanism (formation of CuS) by a theoretical model. Another important factor in design of gas sensors is the working temperature which so far has not been explicitly explained for H2S sensing process of SnO2-CuO system. In present study, origin of this temperature for SnO2-CuO thin bilayer based on the selective mechanism has been theoretically interpreted. For this purpose, Poisson, Laplace and continuity... 

    Investigating the role of MoS2/reduced graphene oxide as cocatalyst on Cu2O activity in catalytic and photocatalytic reactions

    , Article New Journal of Chemistry ; Volume 41, Issue 16 , 2017 , Pages 7998-8005 ; 11440546 (ISSN) Akbarzadeh, E ; Rahman Setayesh, S ; Gholami, M. R ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    In this study, MoS2/reduced graphene oxide (rGO) was used as a cocatalyst to synthesize very highly efficient Cu2O/MoS2/rGO for cooperative catalytic applications. The resulting nanocomposite was characterized by various analytical techniques and applied for catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol and photocatalytic degradation of Acid blue 92. Cu2O/MoS2/rGO composite presents superior performance to pure Cu2O particles in both catalytic and photocatalytic reactions. This excellent activity demonstrates synergistic effect of MoS2/rGO as a cocatalyst in the nanocomposite. The role of the active sites in the reduction of 4-NP and degradation of dye was discussed and... 

    Oxidation of toluene in humid air by metal oxides supported on Γ-alumina

    , Article Journal of Hazardous Materials ; Volume 333 , 2017 , Pages 293-307 ; 03043894 (ISSN) Esmaeilirad, M ; Zabihi, M ; Shayegan, J ; Khorasheh, F ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Monometallic and bimetallic supported metal oxides catalysts on γ-alumina were prepared by heterogeneous deposition-precipitation. The γ-alumina used as a support was synthesized by the sol-gel and the co-precipitation methods. Supports and catalysts were characterized by Brunauer–Emmett–Teller (BET) surface area, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The performance of the prepared catalysts was studied for total oxidation of toluene in air at different relative humidity and oxidation temperatures. Efficiency of bimetallic catalysts for deep oxidation of toluene was... 

    Novel multifunctional capacitor-varistor ceramics based on SnO2

    , Article Ceramics International ; Volume 44, Issue 16 , 2018 , Pages 20386-20390 ; 02728842 (ISSN) Maleki Shahraki, M ; Alipour, S ; Mahmoudi, P ; Karimi, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Up to now, multifunctional varistor-capacitor materials were based on TiO2, even though these materials failed to have practical applications. For the first time, in this research, multifunctional varistor-capacitor properties are observed in the CuO-doped SnO2-CoO-Sb2O3 system. The XRD analysis showed that this system has a single phase microstructure. SEM images indicated that the CuO addition resulted in a better densification and larger grain size. The very low electric breakdown field of the CuO-doped SnO2-CoO-Sb2O3 system (12 V/mm, similar to TiO2), is a consequence of coarse-grained microstructure. This varistor had a suitable surge withstand capability as well. The colossal... 

    Microstructural developments and electrical properties of novel coarse-grained SnO2 varistors obtained by CuO addition for low-voltage applications

    , Article Ceramics International ; Volume 44, Issue 15 , 2018 , Pages 18478-18483 ; 02728842 (ISSN) Maleki Shahraki, M ; Mahmoudi, P ; Golmohammad, M ; Delshad Chermahini, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This research focused on making novel low-voltage SnO2 varistors by CuO addition on conventional high-voltage SnO2 varistors. Moreover, the withstand surge capability of samples was studied. The results showed that CuO addition enhances grain growth of SnO2 and coarse-grained SnO2 varistors with simple microstructures were acquired in 1 mol% CuO-doped sample. This coarse-grained SnO2 varistor presented a high nonlinear coefficient (23) and low leakage current density (23 µA/cm2) with low breakdown field value of 0.6 kV/cm. Despite the large grain size, the low residual voltage ratio (2.3) was obtained for this sample compared to the CuO-free sample. The decrease in grain electric resistivity... 

    Effects of the design parameters on characteristics of the inductances and JJS in HTS RSFQ circuits

    , Article IEEE Transactions on Applied Superconductivity ; Volume 28, Issue 7 , 2018 ; 10518223 (ISSN) Jabbari, T ; Shanehsazzadeh, F ; Zandi, H ; Banzet, M ; Schubert, J ; Fardmanesh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    We have investigated various geometrical design dependencies for rapid single-flux-quantum (RSFQ) circuits in high- Tc superconductors (HTS) technology, including the characteristics of the intermediate inductances. Structural- and temporal-dependent combinations of Cn - Rn (capacitance and normal resistance of the Josephson junctions, JJs) in the HTS technology are also investigated. Relatively favorable combinations of normal resistance and low capacitance of the JJs needed in the HTS technology for RSFQ circuits have been made possible by recent fabrication methods of high-quality YBCO films. Obtaining these devices is made achievable by using the grain boundary structures and high... 

    Fast fourier transform based NDT approach for depth detection of hidden defects using HTS rf-SQUID

    , Article IEEE Transactions on Applied Superconductivity ; Volume 28, Issue 7 , 2018 ; 10518223 (ISSN) Rostami, B ; Shanehsazzadeh, F ; Fardmanesh, M ; Sharif University of Technology
    Abstract
    We present a new approach for depth detection of hidden defects based on the analysis of the frequency spectrum of the output waveform in a nondestructive testing (NDT) system. In our eddy current Superconducting quantum interference device (SQUID) based NDT system, we apply multiple frequencies to its single excitation coil in a magnetically unshielded environment. The excitation coil is a planar D-shaped printed circuit board coil, and a high-Tc gradiometer YBCO rf-SQUID is used as the electromagnetic sensor in this system. An automated two-dimensional nonmagnetic scanning robot is used to test samples with intentional defects at different depths. In this approach, a diagram labeled 'FFT... 

    Determination of thermal conductivity ratio of CuO/ethylene glycol nanofluid by connectionist approach

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 91 , 2018 , Pages 383-395 ; 18761070 (ISSN) Ahmadi, M. A ; Ahmadi, M. H ; Fahim Alavi, M ; Nazemzadegan, M. R ; Ghasempour, R ; Shamshirband, S ; Sharif University of Technology
    Abstract
    Thermal conductivity of nanofluids plays key rol in heat transfer capacity of fluids. adding nanoparticles to a base fluid can lead to enhancement in thermal conductivty ratio. CuO/Ethyle Glycol (EG) is one of the most applicable nanofluids for heat transfer purposes. In the present study, thermal conductivty ratio of CuO/EG nanofluid is modeled by applying Group Method of Data Hnadling and Least Square Support Vector Machine – Gentic Algorithm approaches. Results indicated that the utilized model are very accurate in predicting thermal conductivty ratio of the nanofluid. The R-squared values for the proposed model are equal to 0.994 and 0.991 by applying Group Method of Data Handling and... 

    Vertically standing Cu2O nanosheets promoted flower-like PtPd nanostructures supported on reduced graphene oxide for methanol electro-oxidation

    , Article Electrochimica Acta ; Volume 259 , 2018 , Pages 36-47 ; 00134686 (ISSN) Shahrokhian, S ; Rezaee, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The present study reports a simple electrochemical approach to the fabrication of a new nanocomposite containing PtPd nanoflowers (NFs) promoted with two-dimensional (2D) nanosheets (NSs) structure cuprous oxide (Cu2O) supported on reduced graphene oxide (rGO) (PtPd-NFs/Cu2O-NSs/rGO). Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectra, Raman spectroscopy, and energy dispersive X-ray spectroscopy are used for characterization of the PtPd-NPs/Cu2O-NPs/rGO. SEM images showed that vertical-standing arrays of Cu2O with an edge length up to 1 μm and thickness of about 20 nm are electrodeposited on the surface of rGO film. Also, PtPd needle-like NFs with visible and... 

    Effect of graphene oxide nanosheets on visible light-assisted antibacterial activity of vertically-aligned copper oxide nanowire arrays

    , Article Journal of Colloid and Interface Science ; Volume 521 , 2018 , Pages 119-131 ; 00219797 (ISSN) Kiani, F ; Ashari Astani, N ; Rahighi, R ; Tayyebi, A ; Tayebi, M ; Khezri, J ; Hashemi, E ; Rothlisberger, U ; Simchi, A ; Sharif University of Technology
    Academic Press Inc  2018
    Abstract
    In the present work, the effect of graphene oxide (GO) nanosheets on the antibacterial activity of CuO nanowire arrays under visible light irradiation is shown. A combined thermal oxidation/electrophoretic deposition technique was employed to prepare three-dimensional networks of graphene oxide nanosheets hybridized with vertically aligned CuO nanowires. With the help of standard antibacterial assays and X-ray photoelectron spectroscopy, it is shown that the light-activated antibacterial response of the hybrid material against gram-negative Escherichia coli is significantly improved as the oxide functional groups of the GO nanosheets are reduced. In order to explore the physicochemical... 

    Visible-enhanced photocatalytic performance of CuWO4/WO3 hetero-structures: Incorporation of plasmonic Ag nanostructures

    , Article New Journal of Chemistry ; Volume 42, Issue 13 , 2018 , Pages 11109-11116 ; 11440546 (ISSN) Salimi, R ; Sabbagh Alvani, A. A ; Naseri, N ; Du, S. F ; Poelman, D ; Sharif University of Technology
    Royal Society of Chemistry  2018
    Abstract
    A new plasmonic Ag hybridized CuWO4/WO3 heterostructure was successfully synthesized via a ligand-assisted sol gel method. The as-prepared plasmonic nanohybrid was thoroughly characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible spectroscopy, photoluminescence (PL) spectrometry, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, Brunauer-Emmett-Teller (BET) surface area analysis and electrochemical impedance spectroscopy (EIS). Moreover, the photocatalytic activity was evaluated by photo-degradation of methylene blue (MB) under visible light irradiation. The results indicate that the as-prepared plasmonic Ag-CuWO4/WO3 nanohybrid (compared to pure... 

    HTS YBCO resonator configuration with a coplanar optimized flux concentrator strongly coupled to RF squid

    , Article IEEE Transactions on Applied Superconductivity ; Volume 28, Issue 4 , 2018 ; 10518223 (ISSN) Qaderi, F ; Shanehsazzadeh, F ; Mazdouri, B ; Fardmanesh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    We developed a novel magnetic coupling module, formed of a monolayer superconducting flux concentrator that is integrated with a coplanar resonator, strongly coupled to high-temperature superconducting radio frequency superconducting quantum interference device (SQUID). Three types of resonators, including a long stripline resonator between the input loop and the pick-up loop of the flux concentrator, a complementary split ring resonator, and a spiral shape inside the input loop, are explored. The resonance quality factor of different patterns of these three types of the resonators, as well as their coupling to the SQUID, is evaluated using finite-element-method simulations. Several readout... 

    Synthesis and characterization of YBaCu2O5-δ compound

    , Article Physica C: Superconductivity and its Applications ; Volume 548 , 15 May , 2018 , Pages 112-115 ; 09214534 (ISSN) Ehsandoust, A ; Sandoghchi, M ; Mokhtari, P ; Akhavan, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    YBaCu2O5 compound as one of the possible microstructures of Y3Ba5Cu8O19 has been synthesized. The X-ray diffraction analysis of this compound indicates that its formation is accompanied with the formation of YBa2Cu3O7-δ. The observed superconductivity around ∼92 K supports this. So, it seems that YBa2Cu3O7-δ is responsible for the observed superconductivity in YBaCu2O5, and this phase is not an independent superconducting phase. Consequently, the overall effect of the YBaCu2O5 formation during the Y3Ba5Cu8O19 fabrication process could be a reduction in Tc. © 2018 Elsevier B.V  

    Characterization of three-dimensional reduced graphene oxide/copper oxide heterostructures for hydrogen sulfide gas sensing application

    , Article Journal of Alloys and Compounds ; Volume 740 , 2018 , Pages 1024-1031 ; 09258388 (ISSN) Mirmotallebi, M ; Iraji zad, A ; Hosseini, Z. S ; Jokar, E ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Three-dimensional reduced graphene oxide (3D-rGO) structures decorated with CuO particles (GCu) are synthesized through a simple and scalable method for detection of hydrogen sulfide (H2S) gas. For characterization and investigation of porous structure various techniques were employed. Decorated 3D structures demonstrated higher sensitivity and selectivity in comparison to pure structure. Optimized structure for sensing was obtained through introducing different amounts of CuO. The GCu heterostructures containing 35 μmol of CuO powder demonstrated reproducible response of about 30% to the concentration of 10 ppm at room temperature, while complete recovery was obtained through heating to 150... 

    Numerical investigation of the effects of fin shape, antifreeze and nanoparticles on the performance of compact finned-tube heat exchangers for automobile radiator

    , Article Applied Thermal Engineering ; Volume 133 , 2018 , Pages 248-260 ; 13594311 (ISSN) Habibian, S. H ; Mostafazade Abolmaali, A ; Afshin, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper, heat transfer and pressure drop of air in the radiator of an internal combustion engine automobile were investigated. First, three types of fins including louvered, triangular vortex generator and rectangular vortex generator were modeled and their performance were compared with a plain fin. Effects of adding antifreeze in volume ratios of 40, 50 and 60% on the performance of louvered and rectangular vortex generator fins were investigated. Finally, the effects of adding copper oxide and aluminum oxide nanoparticles on the heat transfer improvement of louvered and rectangular vortex generator fins were simulated. The results demonstrated that louvered fin had the highest heat... 

    Reproducible electrochemical analysis of nanostructured Cu2O using a non-aqueous 3-methoxypropionitrile-based electrolyte

    , Article Electrochemistry Communications ; Volume 86 , 2018 , Pages 1-5 ; 13882481 (ISSN) Shooshtari, L ; Iraji zad, A ; Mohammadpour, R ; Sharif University of Technology
    Elsevier Inc  2018
    Abstract
    Cu2O is an attractive material in terms of semiconducting properties and is considered a leading candidate in all-oxide photovoltaics. Electrochemical analysis of Cu2O, including Mott-Schottky (MS) and impedance spectroscopy (IS), provides a wealth of data on charge carriers, Fermi level and interface properties. MS and IS are usually measured in aqueous solutions. However, Cu2O is easily reduced or oxidized to Cu or CuO in aqueous solutions, the layer peels off after the analysis and there is a small voltage window for the tests. In some cases, an anti-corrosive n-type barrier layer is employed on top of the bare Cu2O electrode to make the measurement possible, which could result in...