Loading...
Search for: copper-oxides
0.013 seconds
Total 129 records

    Fabrication of Nanostructure Cuprous Oxide Films for Photovoltaic Systems

    , Ph.D. Dissertation Sharif University of Technology Shooshtari, Leyla (Author) ; Iraji Zad, Azam (Supervisor) ; Mohammadpour, Raheleh (Supervisor)
    Abstract
    Metal oxide semiconductors are promising materials for photovoltaic systems, because they are chemically stable, almost non-toxic and abundant. These materials are cheap and have low cost fabrication process. Cu2O is the most popular metal oxide semiconductor to absorb light in Photovoltaic (PV) applications, and photocathode in the photoelectrochemical systems.In this project, thermal oxide and electrodeposition methods, both interesting and cheap, were applied for preparing Cu2O films. As inexpensive materials results in low-minority carrier diffusion length, we report on surface engineering of bulk Cu2O photocathode thorough employing nanorods of copper oxide with the average lengths of... 

    H2 Production Via Cu2O Nanostructured on TNA in Water Splitting Reaction under Visible Photo-irradiation

    , M.Sc. Thesis Sharif University of Technology Mahmoudi Ali Bygi, Behzad (Author) ; Moshfegh, Alireza (Supervisor) ; Saboohi, Yadollah (Co-Advisor)
    Abstract
    In this research, initially, thin film of TiO2 nanotube arrays (TNA) was deposited on Titanium foil (Ti), using anodization technique under an optimized applied voltage of 60 V, for 200 minutes. Highly smooth and ordered TNA formed by effective two-step anodization method. The TNA synthesized by this procedure, showed a better surface smoothness and tube order as compared with the TNA prepared in one-step anodization process. The electrolyte which was utilized for the anodization process, contained 90% of Ethylene Glycol (EG) in volume, 10% de-ionized water (DI) in volume, 0.1M Ammonium Fluoride (NH4F), and 0.5 ml Phosphoric Acid (H3PO4) 1M in order to adjust the pH about 5.6. Moreover, the... 

    Copper Oxide/g-C3N4 Nanocomposites: Synthesis and Optical and Photocatalytic Properties Investigation

    , M.Sc. Thesis Sharif University of Technology Hosseini Hosseinabad, Morteza (Author) ; Sadrnezhaad, Khatiboleslam (Supervisor)
    Abstract
    Herein, cupric oxide (CuO)/graphitic carbon nitride (g-C3N4) is synthesized under microwave irradiation for enhanced photoelectrochemical (PEC) performance and photostability. A facile, one-pot method was utilized to directly deposit the nanocomposite onto FTO from a solution containing copper precursor and urea. Possible mechanisms of CuO/g-C3N4 formation and PEC performance improvement were examined via XRD, FTIR, FESEM, XPS, UV-Vis, and PL. Controlled amounts of urea determined the morphological evolution of CuO and the formation of a protective carbon layer, while its excess quantity converted to g-C3N4 in the presence of CuO. Through heat treatment of the nanocomposite, carbon-doped... 

    Microstructure, Properties and Kinetic Characterization in SnO2-Based Varistor with Addition of CuO Nano Particle

    , M.Sc. Thesis Sharif University of Technology Mahmoudi, Pezhman (Author) ; Nemati, Ali (Supervisor) ; Seyyed Reyhani, Morteza (Supervisor)
    Abstract
    The aim of this study is to investigate the effect of Copper oxide on the microstructure, properties, and grain growth kinetic in Tin oxide- Based varistors. Copper oxide was mixed in Tin oxide with different concentration, including 0, 0.1, 0.25, 0.5, and 1 mol% and the samples were sintered at 1250, 1300, and 1350 oC. Then, phase and microstructural characterization was investigated and consequently, electrical properties were evaluated. According to results, Copper Oxide with forming the liquid phase through the sintering process, accelerated grain growth. It was found that, by increasing concentration of CuO, mean grain size was increased from 2.6 µm in 1250 oC and 5 hours to 17.1 µm... 

    Investigation of Antifouling Coating Paint on Steel

    , M.Sc. Thesis Sharif University of Technology Jalaee, Adel (Author) ; Afshar, Abdollah (Supervisor)
    Abstract
    Plants and aquatic creatures growth on the surface of human made structures is a typical phenomena. One of the approaches to prevent algae and moss to grow is using paint coatings including biocides. In this research project, anti-moss paints containing Copper Oxide as the major biocide and Zinc Oxide as the minor biocide have been synthesized. The effects of different parameters like the type of resin, biocide concentration, biocide grain sizes, dip time, and the coating layer thickness on the release rate which is the most important factor to prevent moss growth, have been investigated. Then, the experiment has been conducted on the specimens in algae growth and flustered sea water... 

    Photocatalytic Dye Degradation of Wastewater Using Copper Composite Nanophotocatalyst by Advanced Oxidation Process

    , M.Sc. Thesis Sharif University of Technology Rezaei, Pardis (Author) ; Ghotbi, Cyrus (Supervisor) ; Mahmoodi, Niyaz Mohammad (Supervisor) ; Kazemeyni, Mohammad (Supervisor)
    Abstract
    Azo dyes that are the most common dyes in textile industries, are toxic and stable complex compounds. Release of this dyes in environment disturb the ecosystem and endanger human health. So selection of an appropriate method for treatment of them is a sensitive work. photocatalytic degradation is one of the best promising methods because of its perfect mineralization, middle condition and lack of creating the secondary pollutant. In this research CuO/CNT nanocomposite was synthesized and used as a photocatalyst. The surface features of CuO/CNT were surveyed by using Fourier transform infrared(FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM). Photocatalytic efficiency of... 

    Application of Metallic Nanoparticles in Treatment of Wastewater Containing Dyestuffs

    , M.Sc. Thesis Sharif University of Technology Hosseini, Reza (Author) ; Shaygan, Jalalaldin (Supervisor)
    Abstract
    Textile industrial wastewaters are one of the most important sources of environmental contaminants. In the recent years, use of advanced oxidation processes, by producing highly active and reactive components such as hydroxyl radicals has been proposed. The aim of this research is oxidative degradation of methylene blue dye using Cu-nanoparticles immobilized on a polymer support with H2O2 as an oxidant reagent.In general, oxidative degradation of methylene blue with hydrogen proxide in the presence of immobilized CuO nanoparticles on a polymer support as the catalyst was studied. We used polyamidoamine (PAMAM) dendrimer as the polymer support for nanoparticles. fourth generation of PAMAM was... 

    Design and Synthesis of Supported Metal Oxide Catalysts on Activated Carbon for Removal of VOCs from Air

    , Ph.D. Dissertation Sharif University of Technology Zabihi, Mohammad (Author) ; Shaygan Salek, Jalaloddin (Supervisor) ; Khorasheh, Farhad (Supervisor)
    Abstract
    Emission of aromatic and aliphatic compounds to atmosphere is a major environmental concern for many urban societies. Catalytic oxidation of volatile organic compounds (VOCs) is an efficient and low operating cost technology for reduction of air pollution.
    First, dispersed copper oxide nano-catalysts supported on almond shell-based activated carbon were prepared for catalytic oxidation of toluene in air. The Response Surface Methodology (RSM) was used to express the catalyst removal efficiency in terms of catalyst metal loading and calcination temperature. Calcination temperature had a significant effect on the catalyst activity only at high metal loadings (upper 8% wt.). Two different... 

    Effect of Relative Humidity on Catalytic Combustion of Toluene over Nano Copper Based Catalysts with Nano Alumina Supports

    , M.Sc. Thesis Sharif University of Technology Esmailirad, Mohammad Reza (Author) ; Khorasheh, Farhad (Supervisor) ; Badkhshann, Amir (Supervisor)
    Abstract
    Volatile organic materials are amongst the most important air pollutants that presence of the moisture in polluted air during oxidation process are the most difficult to remove volatile contaminants using catalysts. In this study, nano-copper oxide catalyst on nano-alumina for complete oxidation of toluene in the presence of moisture at different temperatures and atmospheric pressure were examined. Alumina basic using co-precipitation and sol-gel methods have been synthesized, which is for the first time that alumina tri-second-butyl pre-manufacturer have been used for gamma-nano-alumina by sole gel method was used. Surface properties of synthesized nano-alumina have been studies by various... 

    Synthesis and Characterization of a Copper Catalyst for Low Temperature Water –Gas Shift Reaction

    , M.Sc. Thesis Sharif University of Technology Rafiee Renani, Mansoureh (Author) ; Khorasheh, Farhad (Supervisor) ; Khandan, Nahid (Co-Advisor)
    Abstract
    Water Gas Shift (WGS) reaction is an old reaction in which syngas is used for producing Hydrogen. At the present time, the major application of this reaction is in fuel cells, since the necessary Hydrogen for these cells is provided by this reaction.
    The present study investigate the influence of different preparation methods on properties of Cu-ZnO/Al2O3 catalyst for water gas shift (WGS) reaction, which is now known as the Commercial catalyst for low temperature WGS, and its influence on performance of Cu-ZnO/Al2O3 catalyst to derive an optimal Cu-ZnO/Al2O3 catalyst for water gas shift (WGS) reaction. Cu-ZnO/Al2O3 catalysts was synthesized by CP, DP, DP-Ultra, IWI , CP-Urea, and... 

    Synthesis and Investigation of Tribological Properties of Rubber-Based Friction Materials with low Friction Coefficient

    , M.Sc. Thesis Sharif University of Technology Jamal Anaraki, Maryam (Author) ; Shojaei, Akbar (Supervisor)
    Abstract
    Nowadays, replacement of traditional cast iron shoes with composite brake blocks is a main project in railway systems. The main purpose of this replacement is noise reduction( for example by about 10dB for a 100km/h freight train). One of the main sources of noise emission is the rolling sound of the wheel on the rail. The rougher and more out-of-round wheel surface, the greater the noise produced. Cast iron brake shoes, still widely used on freight wagons, make the wheel surface much rougher than composite brake blocks due to the fusing of minute metal particles into the tread surface during braking. It is therefore necessary to replace the current cast iron brake shoe with a synthetic... 

    Preparation and Characterization of One-dimensional Copper Oxide Nanostructures for Field Ionization Gas Sensors

    , M.Sc. Thesis Sharif University of Technology Hassan, Ahmadvand (Author) ; Iraji Zad, Azam (Supervisor)
    Abstract
    The purpose of this project is to construct a gas sensor based on one-dimensional nanostructured electrodes of copper oxide. By creating of these nanostructures, can be reduced breakdown voltage of gases, including flammable, to a few hundred volts. The CuO nanowires were grown by thermal oxidation on copper substrate to form self-assembled. In this method, by heating the copper foil,Cu2O also was formed on substrate. Effects of surface tension of substrate and oxidation temperature on surface density and structure of the nanowires were studied. SEM images taken from the samples showed that the surface tensions increases the density of nanowires and increasing the oxidation temperature leads... 

    Doping Effect of Copper and Copper Oxide on H2S Sensing of Nanostructured WO3

    , M.Sc. Thesis Sharif University of Technology Nowrouzi, Rasoul (Author) ; Iraji Zad, Azam (Supervisor)
    Abstract
    The aim of this research is preparation of tungsten trioxide nanoparticles film for hydrogen sulfide gas sensing. These nanoparticles were made by simple and inexpensive sol-gel method. To improve gas sensing properties, various precursors of copper and copper oxides were added to the sol. This solution was coated on alumina substrate by spin coating method. After annealing, sensing properties of samples were studied by measuring the electrical resistance. Best precursor and its molar percentage of copper to tungsten were selected (WO3-Cu2O (1%)). All tests for this sample were done in temperatures below 100 °C and gas concentration lower than 10 ppm. Sensitivity of WO3-Cu2O (1%) to 1 ppm... 

    Electrochemical Degradation of Organic Pollutants in the Presence of Spinel Cobalt Ferrite Nanoparticles: Investigation of the Effective Parameters and Evaluation of Degradation Kinetics

    , M.Sc. Thesis Sharif University of Technology Mousavi, Sadegh (Author) ; Rahman Setayesh, Shahrbanoo (Supervisor)
    Abstract
    In this study, CoFe2O4/CuO nanocomposite was synthesized by hydrothermal method and utilized for removal of metronidazole in electro-Fenton process. Nanocomposite was characterized by FT-IR, XRD, FE-SEM, VSM and BET methods. The Results of XRD patterns confirmed the monoclinic structure formation for copper(Ⅱ) oxide and the spinel structure for CoFe2O4. The FE-SEM images displayed the formation of CuO nanosheets for copper(Ⅱ) oxide and the decoration of cobalt ferrite nanoparticles on the surface of CuO nanosheets. Measurement of the surface area of nanocatalysts using BET isotherm represented the high surface area for CuO nanosheets and the increase of surface area of nanocomposite in... 

    Green Chemistry of Copper Oxide Nanoparticles from Salvia Hispanica: Potential Biological and Catalyst Activity in Click Chemistry

    , M.Sc. Thesis Sharif University of Technology Ghadiri Ghehi, Amir Mohammad (Author) ; Bagherzadeh, Mojtaba (Supervisor)
    Abstract
    The present work was aimed to account a green and eco-friendly synthesis of copper oxide nanoparticles using Salvia hispanica extracts for the first time.The synthesized copper oxide nanoparticles were fully characterized using FT-IR, XRD, FESEM, EDX, TEM and UV-Vis spectroscopy techniques. The average particle size of copper oxide nanoparticles is around 35 nm and shape of nanoparticles are spherical. Biological activity of the synthesized nanoparticles were evaluated in terms of antibacterial assessments against Staphylococcus aureus and Escherichia coli. In the following, the potential antibacterial activity against gram positive (S.aureus) and gram negative (E.coli) bacteria’s were... 

    Preparation and Study of the Electrochemical Ptal Oxide Particles/Carbon Nanoparticles: Application to Pharmaceutical Determinations

    , M.Sc. Thesis Sharif University of Technology Kohansal, Razieh (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In the first work, a novel voltammetric biosensor basedon TiO2-nafion-carbon nanoparticles modified glassy carbon electrode (TiO2/N/CNP/GCE) was developed for the determination of DBA. The electrochemical performance of the modified electrode was investigated by means of cyclic voltammetry (CV), different pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. Characterization of the surface morphology and properties of TiO2/N/CNP was carried out by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Effective experimental variables, such as scan rate, pH of the supporting electrolyte, drop size of the cast modifier suspension and accumulation... 

    H2S sensing properties of added copper oxide in WO3

    , Article Key Engineering Materials ; Volume 543 , March , 2013 , Pages 145-149 Nowrouzi, R. (Rasoul) ; Razi Astaraei, F. (Fatemeh) ; Kashani, Sh. (shima) ; Iraji Zad, A. (Azam) ; Sharif University of Technology
    Abstract
    We study Hydrogen sulfide gas detection properties of pure and 1% copper oxide added WO3 thin films. The spin coated deposits on alumina substrates were annealed at 500 C for 1 hour in order to improve the crystallinity of the films. The sensitivity of pure tungsten oxide is poor even at temperatures of about 100 C but the doped samples exhibit good response to H2S gas. Our data show sensitivity of about 1500 in 10 ppm diluted gas in air at 100 C. The films are sensitive to the gas even at 250 ppb (sensitivity about 2) H2S concentration at 100 C but with rather long recovery time. Crystal structure, morphology and chemical composition of samples were studied by X-Ray diffraction (XRD),... 

    Effect of geometry, joule heating, and critical current on the responsivity of MOD superconducting transition edge sensors

    , Article Journal of Superconductivity and Novel Magnetism ; Volume 26, Issue 4 , April , 2013 , Pages 831-834 ; 15571939 (ISSN) Hosseini, M ; Moftakharzadeh, A ; Kokabi, A ; Vesaghi, M. A ; Fardmanesh, M ; Sharif University of Technology
    2013
    Abstract
    By fabrication of several bolometric detectors on the YBCO film made of Metal-Organic Deposition (MOD) and the effect of pattering and film parameters on the optical responsivity of transition edge sensors is investigated. The low cost nonfluorine (MOD) method has been applied to fabricate YBCO thin films with different patterning parameters. The measurement results of the optical responsivity versus modulation frequency up to 100 KHz for these devices are reported  

    MOD growth of epitaxial cerium oxide buffer layer on LAO substrates for fabrication of c-axis oriented YBCO

    , Article Micro and Nano Letters ; Volume 7, Issue 10 , 2012 , Pages 1008-1010 ; 17500443 (ISSN) Hosseini, M ; Foroughi Abari, F ; Vesaghi, M. A ; Fardmanesh, M ; Sharif University of Technology
    2012
    Abstract
    Epitaxial cerium oxide (CeO2) buffer layer has been grown on lanthanum aluminate (LAO) single crystal substrates for fabrication of c-axis oriented YBa2Cu3O7-x (YBCO). Precursor solution of cerium acetylacetonates with viscosity of 0.6 centipoises was spin coated on the 1×1 cm area LAO substrates. The calcination was carried out by very slow ramp (1°C per minute) until the final temperature of 500°C in oxygen flow to remove most of the organic compounds. The final heat treatment has been done at 780°C by a ramp of 20° per minute in gas flow of mixed argon-oxygen with 5 Pa partial pressure of oxygen. The thickness of the deposited CeO2 buffer layer was 20 nm. Then, 100 nm thick YBCO film was... 

    Tunability of terahertz random lasers with temperature based on superconducting materials

    , Article Journal of Applied Physics ; Volume 112, Issue 4 , 2012 ; 00218979 (ISSN) Ghasempour Ardakani, A ; Bahrampour, A. R ; Mahdavi, S. M ; Hosseini, M ; Sharif University of Technology
    2012
    Abstract
    We theoretically demonstrate the tunabiltiy of terahertz random lasers composed of high temperature superconductor YBCO and ruby layers as active medium. The considered system is a one-dimensional disordered medium made of ruby grain and YBCO. Finite-difference time domain method is used to calculate the emission spectrum and spatial distribution of electric field at different temperatures. Our numerical results reveal that the superconductor based random lasers exhibit large temperature tunability in the terahertz domain. The emission spectrum is significantly temperature dependent, the number of lasing modes and their intensities increase with decreasing temperature. Also, we make some...