Loading...
Search for: corrosion-resistant
0.007 seconds
Total 178 records

    Magnetron-sputtered TixNy thin films applied on titanium-based alloys for biomedical applications: Composition-microstructure-property relationships

    , Article Surface and Coatings Technology ; Volume 349 , 2018 , Pages 251-259 ; 02578972 (ISSN) Nemati, A ; Saghafi, M ; Khamseh, S ; Alibakhshi, E ; Zarrintaj, P ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Progress in tissue engineering and regenerative medicine necessitates the use of novel materials with promising bio-surface for biomedical applications. In this work, TixNy thin films are applied on biological TC4 substrates in a mixed atmosphere of Ar and N2 via magnetron sputtering system for the protection of TC4 alloy. The effects of N/Ti ratio on the phase structure, growth orientation, contact angle, and the mechanical and corrosion performances of thin films are discussed by implementation of composition-microstructure-property interrelationships. The phase structure of TixNy thin films is changed from amorphous-like to single phase Ti2N structure with increasing N/Ti ratio. In the... 

    Degradation behavior of the as-extruded and ECAP-processed Mg-4Zn alloy by Ca addition and hydrothermal coating

    , Article Journal of Materials Research and Technology ; Volume 20 , 2022 , Pages 1204-1215 ; 22387854 (ISSN) Zohrevand, M ; Mohammadi Zerankeshi, M ; Nobakht Farin, F ; Alizadeh, R ; Mahmudi, R ; Sharif University of Technology
    Elsevier Editora Ltda  2022
    Abstract
    Coating is an effective approach to address the high corrosion rate of biodegradable Mg alloys, as their main challenge toward their extensive use. In this regard, it was tried to control the degradation process of an Mg-4Zn alloy by Ca addition, equal channel angular pressing (ECAP), and hydrothermal coating. The obtained results indicated that excellent grain refinement induced by Ca incorporation and ECAP simultaneously, improved both mechanical strength and corrosion resistance of the Mg-based substrate. The achieved grain refinement resulted in a thicker, more compact and integrated coating, where the ECAP-processed Mg-4Zn-0.5Ca alloy exhibited the best coating quality with no... 

    Effect of crystallographic texture and twinning on the corrosion behavior of Mg alloys: A review

    , Article Journal of Magnesium and Alloys ; Volume 10, Issue 2 , 2022 , Pages 313-325 ; 22139567 (ISSN) Gerashi, E ; Alizadeh, R ; Langdon, T. G ; Sharif University of Technology
    National Engg. Reaserch Center for Magnesium Alloys  2022
    Abstract
    Magnesium and its alloys have gained significant popularity due to their light weight and their potential for use as bioresorbable materials. However, their application is limited in practice due to their relatively poor corrosion resistance. Several methods are available for improving the corrosion resistance of Mg alloys for bio-applications such as using different coatings, alloying, and modifying the microstructural parameters such as the grain size and the crystallographic texture. This review provides a comprehensive summary of the effects of crystallographic texture and twinning, as one of the most important deformation mechanisms of Mg and Mg alloys, on the corrosion behavior.... 

    Characterization of Ceramic Coating Synthesized on Magnesium Alloy Substrate by Plasma Electrolytic Oxidation Process

    , M.Sc. Thesis Sharif University of Technology Rafizadeh, Ehsan (Author) ; Faghihi Sani, Mohammad Ali (Supervisor)
    Abstract
    Plasma electrolytic oxidation (PEO) is currently recognized as an effective coating method on active metals such as magnesium. In this method, through occurrence of strong electric discharges on the surface of the anode accompanied by electrochemical and thermo-chemical reactions at plasma environment, a relatively thick ceramic coating with complex compounds grows on the metal surface which significantly improves its properties. Regarding the influence of PEO electrical parameters on the morphology and other properties of the coating, the objective of the present study is to prepare a quality ceramic coating on AZ31 magnesium alloy substrate via setting the process parameters, such as... 

    Electroplating Nano Crystalline Nickel for Reduction of Corrosion Rate

    , M.Sc. Thesis Sharif University of Technology Hajinejad, Davood (Author) ; Baghalha, Morteza (Supervisor)
    Abstract
    Polycrystalline materials are solids that are composed of many crystallites of varying size and orientation called “Grain”. As the grain size reduces to the values below 100nm, the overall material properties are remarkably changed, and thus the resulting nanocrystalline materials have provided much better engineering properties at the same chemical composition compared to the microcrystalline. The main objective of the present study is to synthesize a nanocrystalline (22nm-25nm) coating based on Nickel over the yellow-brass plates. To do this, an electroplating technique in a modified Watts bath is employed in which the current density and stirring speed varied between 3 to 9.5 Ampere per... 

    Pulse Reverse Electrodeposition of Ni-Mo Alloy on Cu

    , M.Sc. Thesis Sharif University of Technology Surani Yancheshmeh, Hooman (Author) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    Alloy coating of nickel - molybdenum with 20-25 wt% Mo, exhibits excellent protective properties against corrosion in different corrosive environments, therefore it has received much attention. In comparison with Ni coatings, Ni-Mo coatings reduce hydrogen evolution reaction overpotential(HER) significantly, therefore it has suitable catalytic properties for HER.
    A few researches on pulse reverse palting of Ni-Mo coatings have been published. in this work, we have evaluated effects of PRC on some properties of Ni-Mo coating such as chemical composition, morphology, catalytic properties for HER, crystaline structure and hardness property. The results of atomic absorption spectroscopy(AAS)... 

    Investigation and Fabrication of Cr2O3 Thin Film Coating on Soda Lime and Low Carbon Steel Substrate

    , M.Sc. Thesis Sharif University of Technology Sarhadi, Neda (Author) ; Dolati, Abolghasem (Supervisor)
    Abstract
    Chromium oxide coatings (Cr2O3) have been widely used due to their remarkable properties in corrosion, wear, optical and mechanical applications. So far, several methods have been used to prepare Cr2O3 thin films. In this study, the chromium oxide was produced by the sol-gel method and dip coated on the low carbon steel and glass substrates. In this context, we encountered with the problem of incoherency of the Cr2O3 ceramic coating to the steel substrates. It is highly likely that this problem be due to causes such as: a) thermal stresses due to the difference between the thermal expansion coefficients of the substrate and the coating, b) incoherent substrate/coating interface due to their... 

    Electrodeposition of Ag-Pd Alloy for Enhancing Corrosion Resistance

    , M.Sc. Thesis Sharif University of Technology Yari, Mohammad Hossein (Author) ; Dolati, Abolghasem (Supervisor)
    Abstract
    Silver is a resistant metal against the oxidation under normal atmospheric conditions, but it reacts readily with sulfur bearing species in the environment and corrodes. Alloying silver with more noble elements, such as Palladium, is a promising approach for increasing corrosion resistance against the sulfur pollutants. The purpose of this research is to develop a plating bath for deposition of Silver-Palladium alloy with acceptable appearance and higher corrosion resistance than pure silver. For this purpose, a bath based on thiosulfate complexing agent was investigated. In this solution, with a bath containing 10 mM of each cation, deposits with palladium content of 6, 11 and 14 % were... 

    Production and Properties of Reduced Graphene Oxide- Zinc Nanocomposite Coating on Steel

    , M.Sc. Thesis Sharif University of Technology Moshgi Asl, Somayyeh (Author) ; Afshar, Abdollah (Supervisor)
    Abstract
    In this project, graphene oxide was produced by chemical method (modified hummers method) because of simplicity and reproductiblity in the manufacuring process. Zinc nanoparticles were produced from pure zinc anode in the graphene oxide solution (anodic dissolution). Nanocomposite coating of reduced graphene oxide – zinc was created by electrochemical reduction with voltage pulse. Optimization of corrosion current density of the coating was done by design of experiments software (central composite design). To achieve this goal, several parameters such as cycles of zinc dissolution, frequency, duty cycle, total time of coating and applied voltage were examined. Using analysis of variance... 

    Coating Nano Composite HAp-Al2O3-TiO2 on Stainless Steel 316 by Sol-Gel Method

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Reza (Author) ; Afshar, Abdollah (Supervisor)
    Abstract
    316L stainless steel is used in implants under load in orthopedics and dentistry due to its high strength and corrosion resistance. Therefore, to improve their biocompatibility properties, bioceramic coatings with more suitable biocompatibility properties are used. Therefore, in the present study, to improve the biocompatibility and corrosion properties on 316 L metal implants, HAp / TiO2 / Al2O3 nanocomposite coating was created using the cost-effective sol-gel method. Titanium + alumina by weight percentage in these coatings were 20, 30, and 40% by weight. In this study, FTIR, XRD, DSC / TG, FE-SEM EDS, DLS tests were performed to investigate the chemical bases in nanocomposites,... 

    Investigation of the Effect of Chlorine ion Concentration on Corrosion of Steel Reinforcement in Concrete

    , M.Sc. Thesis Sharif University of Technology Hajian, Morteza (Author) ; Afshar, Abdollah (Supervisor)
    Abstract
    Today, in our beloved country of Iran and other parts of the world, reinforced concrete structures are used in large industrial projects, in some cases we see their very early failure even before the time of operation. This issue in the southern coasts of the country due to special weather conditions (humidity and high temperature) and the existence of the offensive ions such as chlorine and sulfate in seawater are more important and we always face with severe corrosion of reinforcement and reduced service life of concrete structures in these areas. Despite this, little research has been done on the reliability of concrete facilities in the vicinity of the Caspian Sea in the north of the... 

    Preparation of Composite Coating with ZrO2 Nanoparticles on Aluminum 5052 Alloy Using Plasma Electrolytic Oxidation

    , M.Sc. Thesis Sharif University of Technology Amiri Yarahmadi, Hossein (Author) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    Plasma Electrolytic Oxidation (PEO) method was used for the preparation of ceramic coatings on Aluminum 5052 substrate in a silicate-based electrolyte containing different concentrations of ZrO2 nanoparticles. Before the addition of nanoparticles into the electrolyte, determining process parameters including current density, coating time, and frequency were examined carefully. After studying corrosion behavior, thickness, and coating morphology in different circumstances, the frequency of 50Hz, the current density of 150mA/cm2, and the coating time of 20 minutes were chosen as the optimum parameters. After that and with the usage of those parameters, ZrO2 nanoparticles were added to the... 

    Investigating the Effect of Nanosilica Functionalized with Silane in Concrete Mortar on the Corrosion Behavior of Reinforcement

    , M.Sc. Thesis Sharif University of Technology Mohebifar, Alireza (Author) ; Dolati, Abolqasem (Supervisor)
    Abstract
    The aim of this project is to investigate the effect of adding nano-silica on reinforcement corrosion in concrete caused by chloride. Because concrete is a porous composite, which is exposed to a corrosive environment such as the sea, it needs more protection to control the corrosion of steel reinforcement. This has led to the necessity of using nanoparticles in concrete mortar. This research was done by evaluating the effect of adding nanosilica gel as a partial replacement of type 2 Portland cement and hydrophobic nanosilica, respectively, to mortar and concrete surface on the corrosion resistance of reinforcement. In the project, three models of concrete samples with a cement grade of 550... 

    A Phase Field Model for Simulating the Pitting Corrosion

    , M.Sc. Thesis Sharif University of Technology Hosseinali Arhani, Faezeh (Author) ; Tavakoli, Rouhollah (Supervisor)
    Abstract
    Corrosion is an electrochemical process that results in the degradation of metallic materials in a corrosive environment. Localized corrosion is a destructive form of corrosion that can lead to catastrophic failure of structures. In developed countries, corrosion costs more than 3% of gross national product every year, much more than the costs arisen from all-natural disasters combined. It is very important to understand this process to prevent sudden accidents and also develop high strength corrosion resistant metallic materials. This study presents the formulation and implementation of a phase field model for simulating the activation- and diffusion-controlled pitting corrosion phenomena... 

    The impact of ZrSiO4 nanoparticles addition on the microstructure and properties of dolomite based refractories

    , Article Ceramics International ; Volume 43, Issue 16 , 2017 , Pages 13932-13937 ; 02728842 (ISSN) Ghasemi Kahrizsangi, S ; Karamian, E ; Gheisari Dehsheikh, H ; Sharif University of Technology
    Abstract
    Dolomite base refractories have advantages such as high refractoriness, potential to produce pure steel molten, high alkaline corrosion resistance, and economical for consumers. However, application of these refractories has been limited due to their high potential to hydration with atmosphere humidity. In this research work, the impact of ZrSiO4 nanoparticles addition on the physical, thermo-mechanical, mechanical, and microstructure of the dolomite base refractories is investigated. Also, XRD and SEM/EDX analyses were used for determining generated ceramic phases and microstructure evaluation, respectively. Up to 3 wt% ZrSiO4 nanoparticles were added to the compositions. Compositions fired... 

    Failure analysis of a gas turbine marriage bolt

    , Article Journal of Failure Analysis and Prevention ; Volume 7, Issue 2 , 2007 , Pages 81-86 ; 15477029 (ISSN) Mohammadi, M ; Salimi, H. R ; Sharif University of Technology
    2007
    Abstract
    A gas turbine which output 18MW power exploded after 3h of ordinary operation and after 4,785 starts. The turbine's rotor had undergone repair after 77,000 operating hours. A piece was cut from the failed marriage bolt and tested using atomic absorption spectrometry in order to know the grade of the alloy. It was found that the marriage bolt is made from ASTM A193 B16 steel which is suitable. Hardness and microhardness measurement was also determined and showed that it was within the range of the specified hardness for ASTM A193 B16 steel. The marriage bolt's mechanical properties also meet technical specifications and showed that it contained anti-corrosion properties. Visual examination... 

    Surface modification of exchange-coupled Co/NiO x magnetic bilayer by bias sputtering

    , Article Applied Surface Science ; Volume 252, Issue 2 , 2005 , Pages 466-473 ; 01694332 (ISSN) Sangpour, P ; Akhavan, O ; Moshfegh, A. Z ; Jafari, G. R ; Kavei, G ; Sharif University of Technology
    Elsevier  2005
    Abstract
    We have investigated the effect of bias voltage on sheet resistance, surface roughness and surface coverage of Co/NiO x magnetic bilayer. In addition, interface topography and corrosion resistance of the Ta/Co/Cu/Co/NiO x /Si(1 0 0) system have been studied for Co layers deposited at an optimum bias voltage. Atomic force microscopy (AFM) and four point probe sheet resistance (Rs) measurement have been used to determine surface and electrical properties of the sputtered Co layer at different bias voltages ranging from 0 to -80 V. The Co/NiO x bilayer exhibits a minimum surface roughness and low sheet resistance value with a maximum surface coverage at Vb=-60 V resulted in a slight increase of... 

    Antibacterial Ti–Cu implants: A critical review on mechanisms of action

    , Article Materials Today Bio ; Volume 17 , 2022 ; 25900064 (ISSN) Mahmoudi, P ; Akbarpour, M. R ; Lakeh, H. B ; Jing, F ; Hadidi, M. R ; Akhavan, B ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Titanium (Ti) has been widely used for manufacturing of bone implants because of its mechanical properties, biological compatibility, and favorable corrosion resistance in biological environments. However, Ti implants are prone to infection (peri-implantitis) by bacteria which in extreme cases necessitate painful and costly revision surgeries. An emerging, viable solution for this problem is to use copper (Cu) as an antibacterial agent in the alloying system of Ti. The addition of copper provides excellent antibacterial activities, but the underpinning mechanisms are still obscure. This review sheds light on such mechanisms and reviews how incorporation of Cu can render Ti–Cu implants with... 

    Electrophoretic deposition of Ni/SiO2 nanocomposite coating: Fabrication process and tribological and corrosion properties

    , Article Journal of Nano Research ; Volume 26 , 6 January , 2014 , Pages 45-51 ; ISSN: 16625250 Isfahani, A. G ; Ghorbani, M ; Sharif University of Technology
    Abstract
    To the best of our knowledge, this work presents the first successful effort to fabricate and study nanostructured Ni-based composite coatings using the electrophoretic deposition method with nanostructured SiO2 particles. In this work, Ni/SiO2 nanoparticle composite coatings were prepared by electrophoretic deposition (EPD) [1] and their hardness, wear and corrosion resistances [2] were examined. After studying the morphology of the coatings and finding the optimum conditions for uniform coating, in order to improve the mechanical properties as well as resistance to corrosion, sintering was performed. The Ni/SiO2 nanocomposite coatings show excellent hardness (∼376 HV), reduced Young's... 

    Characterization of nitrocarburized surface layer on AISI 1020 steel by electrolytic plasma processing in an urea electrolyte

    , Article Journal of Materials Research and Technology ; Volume 2, Issue 3 , 2013 , Pages 213-220 ; 22387854 (ISSN) Karimi Zarchi, M ; Shariat, M.H ; Dehghan, S. A ; Solhjoo, S ; Sharif University of Technology
    Elsevier Editora Ltda  2013
    Abstract
    In this study, electrolytic plasma processing (EPP) was employed for surface nitrocarburizing of AISI 1020 steel in a urea electrolyte, where the substrate samples were connected cathodically to a high-voltage DC current power supply. The structural, mechanical, wear and corrosion properties of the samples treated for 3-5 min were investigated. The results show that the surface layers formed on the samples by this treatment at 220 V have a ferritic nitrocarburizing characteristic which consists of a compound layer and diffusion zone. The surface layers of the treated samples at 240 V consisted of a compound layer, martensitic layer and diffusion zone, respectively, which is a marker of...