Loading...
Search for: cross-flow
0.006 seconds
Total 56 records

    Primary breakup dynamics and spray characteristics of a rotary atomizer with radial-axial discharge channels

    , Article International Journal of Multiphase Flow ; Volume 111 , 2019 , Pages 315-338 ; 03019322 (ISSN) Rezayat, S ; Farshchi, M ; Ghorbanhoseini, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    An experimental investigation of primary breakup dynamics and spray characteristics of a rotary atomizer with high aspect ratio radial-axial discharge channel is described. A high-resolution shadow imaging technique with pulsed backlight illumination was used for spray visualization. For the rotary atomizer with high aspect ratio discharge channel and radial-axial orientation, visualization showed the occurrence of Centripetal–Coriolis-induced stream-mode injection for all operating conditions. In this mode of injection, a crescent liquid film forms in the channel exit and issues from the orifice as a liquid column or a thin liquid sheet depending on atomizer operating conditions. It was... 

    Numerical Analysis of a Supersonic Jet into a Subsonic Compressible Crossflow and the Effects on a Downstream Fin

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Masoud (Author) ; Tayyebi Rahni, Mohammad (Supervisor)
    Abstract
    Jet into cross-flow interaction is one of the complex and fundamental problems in fluids dynamics and heat transfer, which is observed in various applications, such as pollutant discharges, film cooing of turbine blades, combustion chamber design of jet engines, trust vectoring systems, boundary layer control, and vertical short take-off and landing (VSTOL) aircrafts. One of the applications of this kind of flow is injection of supersonic jet into subsonic compressible cross-flow, which is used in trust vectoring systems of missiles. In this research, the two-dimensional interactions of supersonic jet into subsonic compressible cross-flow were investigated as two cases: "without a fin" and... 

    Numerical Simulation of Incompressible Film Cooling, Using Compound Triple Jets and Large Eddy Simulation Approach

    , M.Sc. Thesis Sharif University of Technology Farhadi Azar, Roozbeh (Author) ; Taeibi-Rahni, Mohammad (Supervisor) ; Ramezanizadeh, Mahdi (Co-Advisor)
    Abstract
    The interactions between jets and cross flows appear in many engineering applications (such as film cooling) and thus their study is of great importance. In film cooling, the coolant fluid is transferred from the compressor to the surface of the turbine blades via small holes. An increase of about 170⁰C of the engine working temperature increases the engine efficiency about 5%. To reach higher temperatures of the inlet air flow, one tries to have the least amount of interactions between the film cooling jets and the the cross flow. In this work, we computationally studied turbulent film cooling of a flat plate, in which we used the combined triple jet and investigated the effects of density... 

    Investigation of Flow over a Fin Located Downstream of a Supersonic Jet into Subsonic Crossflow

    , Ph.D. Dissertation Sharif University of Technology Hojaji Najafabadi, Mohammad (Author) ; Tayyebi Rahni, Mohammad (Supervisor) ; Soltani, Mohammad Reza (Co-Advisor)
    Abstract
    The problem of jet into a cross flow is one of the classic problems in fluid mechanics and has many engineering applications, such as in vector thrust control systems. Although many works have been done in this field, there have not been enough research in interactions of supersonic jets into compressible subsonic cross flows (specially its interaction with control surfaces downstream). Hence, the purpose of this research is to get better understanding of this interaction and its effects on control surfaces downstream (both numerical and experimental). Some of the individual achievements of this research are the design and manufacturing of supersonic jet system, parametric study of: boundary... 

    Numerical Study of Spray Formation in Slinger Injection

    , M.Sc. Thesis Sharif University of Technology Karimi, Hamed (Author) ; Farshchi, Mohammad (Supervisor)
    Abstract
    In this M.S. dissertation numerical study of slinger fuel distributer has been studied. This type of atomizer has been used in mini turbojets like Teledyne CAE.
    The main purpose of this work was obtaining spray structure of slinger atomizers. This goal was achieved by implementing a UDF code in FLUENT® software to model the primary atomization that include variation of fluid from exit of slinger disk bores till formation of primary droplet. In FLUENT® the DPM method and its ability to utilizing Lagrangian approaches have been used. The result of this model is validated by the data from experimental test that can be found in Articles. This is the first time that spray structure of slinger... 

    Experimental Investigation of Liquid Jet Break-up In Cross Flow by Effervesvent Injector

    , M.Sc. Thesis Sharif University of Technology Ahmadsadeghi, Payam (Author) ; Morad, Mohammad Reza (Supervisor)
    Abstract
    In This Study break up and trajectory of aerated liquid jet in subsonic cross flow has been investigated. An effervescent two phase flow injector has been used with two different diameters for its external orifice. The effects of non-dimensional parameters on the trajectory of aerated liquid jet were evaluated. Water was used as the fluid for the purpose of producing liquid jet. Air was used to produce gaseous phase in the injector and the cross flow as well.
    A duct with a square cross section and a blower in the inlet of the duct were used to produce the cross flow. Mixture of air and water was injected into the cross flow by the injector installed at the bottom of the duct. Shadowgraph... 

    CFD Modeling of a LNG Microchannel Heat Exchanger

    , M.Sc. Thesis Sharif University of Technology Mahdian, Ehsan (Author) ; Farhadi, Fathollah (Supervisor)
    Abstract
    In the present work, the possibility of using a cross flow microchannel heat exchanger in cryogenic service for natural gas liquefaction has been numerically investigated using 3D computational fluid dynamics approach. Microchannels of rectangular and triangular cross section with a hydraulic diameter of 0.667 and 0.472 mm respectively have been constructed in Gambit and Fluent is used as the solver of numerical simulations.For solver’s equations validation, the existing experimental data on flow of water through rectangular microchannels has been modeled by CFD. Comparison of CFD results with experimental data shows a good agreement.Both models are constructed of three distinct layers. In... 

    Computational Simulation of a Pre-swirl Incompressible Turbulent Jet-into-Cross-Flow Problem, Using LES Approach

    , M.Sc. Thesis Sharif University of Technology Banyassady, Rayhaneh (Author) ; Taeibi Rahni, Mohammad (Supervisor) ; Ramezanizadeh, Mahdi (Co-Advisor)
    Abstract
    Injection of jet into cross-flow has various applications, such as film cooling of gas turbine blades, reaction control jets for missiles and aircrafts, and mixing of air and fuel in combustion chambers. Velocity ratio (blowing ratio), momentum ratio, and streamwise jet inclination angle are important correlation parameters which have been studied extensively. However, not much work has been done on the jet swirling effects. The present work investigates computational simulation of a row of swirling square jets injected normally into a cross-flow. The swirl is introduced using two injectors discharged normally into the jet. Computational simulations were performed using LES approach with... 

    Micro-Nanofluidic Isolation of Circulating Exosomes from Blood Plasma

    , M.Sc. Thesis Sharif University of Technology Abdorahimzadeh, Amir Hossein (Author) ; Taghipoor, Mojtaba (Supervisor) ; saeedi, Mohammad saeed (Supervisor)
    Abstract
    Exosomes are a type of extracellular vesicles which are secreted by cells and could be found in all of human biofluids including blood. The size of exosomes is in the range of 30 – 150 nm. And they have a spherical structure with a phospholipid membrane. Exosomes are very important in academic research for the purpose of diagnostic and therapeutic practices because of their protein and nucleic acid contents.In this study a technological system was developed for isolation of circulating exosomes of human whole blood. This system consisted of a collection of microfluidic chips and protocols in order to extract a purified sample of exosomes from whole blood. First, a chip based on centrifugal... 

    Experimental Investigation of Crescent-Shaped Jets in Crossflow

    , M.Sc. Thesis Sharif University of Technology Borhani Jahromi, Javad (Author) ; Kebriaee, Azadeh (Supervisor) ; Taiebi Rahni, Mohammad (Co-Supervisor)
    Abstract
    In this thesis, the physics related to liquid jet injection from injectors with three different crescent-shaped cross-sectional levels into steady and transverse flow were studied. The imaging method in this research was based on shadowgraph, which enables high-speed imaging. With the help of the obtained images, the breakup regimes, including Rayleigh, first and second wind-induced instabilities, were observed for injection into the steady flow. Furthermore, breakup regimes for jet injection into transverse flow, including columnar, columnar-bag, and bag, were also observed. The characteristics of the breakup height in steady flow and the length and height of the breakup along with the jet... 

    Stream-wise and cross-flow vortex induced vibrations of single tapered circular cylinders: An experimental study

    , Article Applied Ocean Research ; Volume 42 , 2013 , Pages 124-135 ; 01411187 (ISSN) Zeinoddini, M ; Tamimi, V ; Saeed Seif, M ; Sharif University of Technology
    2013
    Abstract
    Tapered circular cylinders are employed in a variety of ocean engineering applications. While being geometrically simple, this configuration creates a complex flow pattern in the near wake of the structure. Most previous experimental studies on tapered circular cylinders were dealing with stationary cylinders to explore the wake flow field and vortex shedding patterns past the cylinder. Few studies paid attentions to the vortex induced vibration of the tapered cylinders. This paper reports some results from in-water towing-tank experiments on the vortex-excited vibrations of tapered circular cylinders in a uniform flow. Cylinders with different mean diameters (28 and 78 mm), mass ratios (6.1... 

    Stability and breakup of liquid jets: Effect of slight gaseous crossflows and electric fields

    , Article Chemical Engineering Science ; Volume 165 , 2017 , Pages 89-95 ; 00092509 (ISSN) Rajabi, A ; Morad, M. R ; Rahbari, N ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Instability and breakup of a liquid jet under the influence of a gaseous crossflow in the presence of an electric field is investigated. A dispersion relation for disturbances on the jet surface is derived for the combined effects based on pioneer linear stability analysis for low speed limits. Effects of Weber, Bond and Ohnesorge numbers on the growth rate of disturbances are studied. The theoretical analysis developed for breakup length is used for comparisons with experimentally obtained breakup lengths. Measured breakup lengths were predicted satisfactorily by the linear theory in the region of low crossflow velocities (0–4 m/s) and electric field intensities (0–3×105 V/m). © 2017... 

    Liquid jet trajectory and droplet path influenced by combined cross flow and electric fields

    , Article Chemical Engineering Science ; Volume 181 , 18 May , 2018 , Pages 114-121 ; 00092509 (ISSN) Rajabi, A ; Morad, M. R ; Rahbari, N ; Pejman Sereshkeh, S. R ; Razavi, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This study investigates an ethanol liquid jet subjected to combination of an air crossflow and a normal electric field. The results on the liquid jet trajectory and subsequent droplets flight paths are presented. The liquid jet trajectory was found as a function of two non-dimensional quantities; the liquid jet to the crossflow momentum ratio and the electroinertial number. The electroinertial number is defined as the ratio between the liquid jet specific momentum and the electric force. A correlation is introduced for the jet trajectory in low crossflow speeds and electric field intensities. The same two quantities control the detached droplets flight paths. Satellite droplets flight angles... 

    Introducing film cooling uniformity coefficient (CUC)

    , Article 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008, Boston, MA, 31 October 2008 through 6 November 2008 ; Volume 10, Issue PART B , 2009 , Pages 1193-1211 ; 9780791848715 (ISBN) Javadi, K ; Javadi, A ; Sharif University of Technology
    2009
    Abstract
    A well performance film cooling implies for a high cooling effectives accompanied with a wide cooling coverage. During the past six decades, film cooling effectiveness has been well defined with a specific relation to quantify it. However, despite of numerous film cooling research, there is not an explicit method to quantify the uniformity of a coolant film spread over the hot surfaces. This work introduces a cooling uniformity coefficient (CUC) to evaluate how well a coolant film spreads over a surface being cooled. Four different cases are computationally studied. In the three cases, a single jet is injected into a hot cross flow with different jet exit shapes (i.e. square, spanwise... 

    Experimental study of lateral dispersion in flexible aquatic canopy with emergent blade-like stems

    , Article Physics of Fluids ; Volume 32, Issue 6 , 25 June , 2020 Jamali, M ; Sehat, H ; Sharif University of Technology
    American Institute of Physics Inc  2020
    Abstract
    This paper quantitatively investigates the role of flexibility of blade-like stems and, in particular, the occurrence of stem resonance on lateral dispersion in emergent aquatic canopies. Two sets of experiments are presented: single-stem and canopy tests. In the first set, the flow around single blade-like flexible model stems and the proximity to a resonant state are studied. Wake areas behind four model stems with distinct flexibilities are measured by particle image velocimetry for stem Reynolds numbers between 350 and 850. A single flexible emergent stem bends and oscillates in in-line and cross-flow directions due to periodic forcing associated with the vortex shedding. The plant... 

    Pressure loss and heat transfer characterization of a cam-shaped cylinder at different orientations

    , Article Journal of Heat Transfer ; Volume 130, Issue 12 , September , 2008 , Pages 1-4 ; 00221481 (ISSN) Nouri Borujerdi, A ; Lavasani, A. M ; Sharif University of Technology
    2008
    Abstract
    Pressure drag coefficient and heat transfer are experimentally investigated around a single noncircular cylinder in cross-flow under angle of attack 0 deg<α>360 deg and Reynolds number 1.5*104

    Pressure loss and heat transfer characterization of a camshaped cylinder at different orientations

    , Article Journal of Heat Transfer ; Volume 130, Issue 12 , September , 2008 , Pages 1245031-1245034 ; 00221481 (ISSN) Nouri Borujerdi, A ; Lavasani, A. M ; Sharif University of Technology
    2008
    Abstract
    Pressure drag coefficient and heat transfer are experimentally investigated around a single noncircular cylinder in cross-flow under angle of attack O deg < α < 360 deg and Reynolds number 1.5 × 104 < Reeq < 4.8 × 104 based on equivalent diameter of a circular cylinder. The results show that the trend of pressure drag coefficient against the angle of attack has a wavy shape but the wavy trend of the Nusselt number is smoother relative to the drag coefficient behavior. It is found that for l/Deq = 0.4 and over the whole range of the Reynolds number, the pressure drag coefficient has a minimum value of about CD = 0.4 at α = 30 deg, 180 deg, and 330 deg and a maximum value of about CD = 0.9 at... 

    Large Eddy Simulation of multiple jets into a cross flow

    , Article Scientia Iranica ; Volume 14, Issue 3 , 2007 , Pages 240-250 ; 10263098 (ISSN) Ramezanizadeh, M ; Taeibi Rahni, M ; Saidi, M. H ; Sharif University of Technology
    Sharif University of Technology  2007
    Abstract
    Multiple square cross section jets into a cross flow at three different velocity ratios, namely 0.5, 1.0 and 1.5, have been computationally simulated, using the Large Eddy Simulation (LES) approach. The finite volume method is applied in the computational methodologies, using an unsteady SIMPLE algorithm and employing a non-uniform staggered grid. All spatial and temporal terms in the Navier-Stokes equations have been discretized using the Power-Law and Crank-Nicolson schemes, respectively. Mean velocity profiles at different X-locations are compared with the existing experimental and Reynolds Averaged Navier-Stokes (RANS) computational results. Although the RANS computations require much... 

    Investigation of Longitudinal Tabs Effects on Compound Triple Jets Configuration in Film Cooling, Applying Large Eddy Simulation Approach

    , M.Sc. Thesis Sharif University of Technology Mehrjoo, Amir Reza (Author) ; Taeibi Rahni, Mohamad (Supervisor) ; Ramezanizadeh, Mehdi (Supervisor)
    Abstract
    In the present work, large eddy simulation approach was employed to investigate flows such as backward facing step and internal channel flow, using Smagorinsky and explicit algebraic subgrid-scale models (EASSM) in OpenFOAM software. For this purpose, an explicit algebraic subgrid-scale model was added to OpenFOAM. Coupling pressure and velocity fields were applied to the PISO-SIMPLE (PIMPLE) algorithm. The focus of the present study was to assess various subgrid scale models, in order to predict the behavior of several flows, as well as their extensive numerical study. The results were compared to available experimental data showning that the EASSM results were more accurate than... 

    Numerical Simulation of the Impact of a Drop with a Flat Surface in a Cross Flow, Using LBM

    , M.Sc. Thesis Sharif University of Technology Yazdani Dizicheh, Hamideh (Author) ; Taebi Rahni, Mohammad (Supervisor)
    Abstract
    In this research, numerical simulation of the impact of a drop on a flat surface with oblique velocity has been performed, using two-phase model of Lattice Boltzmann Method (conservative phase-field). During impact, it is important to investigate two-dimensional drop dynamics and to evaluate the effectiveness of the numerical method used. The model used here restores conservative phase field and preserves mass both locally and globally. In addition, to calculate the slope of the phase field, it calls the center points without engaging finite difference calculations. This makes it efficient for running parallel computations. A fixed dry and hard surface is considered and the drop impacts it...