Loading...
Search for: current
0.008 seconds
Total 1017 records

    A high speed, high resolution, low voltage currentmode sample and hold

    , Article IEEE International Symposium on Circuits and Systems 2005, ISCAS 2005, Kobe, 23 May 2005 through 26 May 2005 ; 2005 , Pages 1417-1420 ; 02714310 (ISSN) Rajaee, O ; Bakhtiar, M. S ; Sharif University of Technology
    2005
    Abstract
    A low voltage current mode sample and hold (S/H) in 0.18μm technology with 1.5v supply voltage is presented. This S/H has 12-bit linearity, i.e., gain and nonlinearity errors of S/H are less than 0.02μA for 100uA input current. Maximum sampling rate for this structure is 100 MHz (using double sampling technique). © 2005 IEEE  

    Numerical simulation of turbid-density current using v2̄ - f turbulence model

    , Article 2005 ASME International Mechanical Engineering Congress and Exposition, IMECE 2005, Orlando, FL, 5 November 2005 through 11 November 2005 ; Volume 261 FED , 2005 , Pages 619-627 ; 08888116 (ISSN); 0791842193 (ISBN); 9780791842195 (ISBN) Mehdizadeh, A ; Firoozabadi, B ; Farhanieh, B ; Sharif University of Technology
    2005
    Abstract
    The deposition behavior of fine sediment is an important phenomenon, and yet unclear to engineers concerned about reservoir sedimentation. An elliptic relaxation turbulence model (v2̄ - f model) has been used to simulate the motion of turbid density currents laden whit fine solid particles. During the last few years, the v2̄ - f turbulence model has become increasingly popular due to its ability to account for near-wall damping without use of damping functions. In addition, it has been proved that the v2̄ - f model to be superior to other RANS methods in many fluid flows where complex flow features are present. Due to low Reynolds number turbulence of turbidity current,(its critical Reynolds... 

    Electrical properties of nanocontacts on silicon nanoparticles embedded in thin SiO2 synthesized by ultralow energy ion implantation

    , Article Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures ; Volume 23, Issue 6 , 2005 , Pages 2821-2824 ; 10711023 (ISSN) Ben Assayag, G ; Shalchian, M ; Coffin, H ; Claverie, A ; Grisolia, J ; Dumas, C ; Atarodi, S. M ; Sharif University of Technology
    2005
    Abstract
    In this paper, we present the room temperature current-voltage characteristics of large (100×100 μ m2) and a nanoscale (100×100 nm2) metal-oxide-semiconductor (MOS) capacitor containing few silicon nanocrystals. The layer of silicon crystals is synthesized within the oxide of this capacitor by ultralow energy ion implantation and annealing. Current fluctuations in the form of discrete current steps and sharp peaks are apparent in the static and dynamic I (V) characteristics of the capacitor. These features have been associated to quantized charging and discharging of the nanoparticles and the resulting Coulomb interaction to the tunneling current. © 2005 American Vacuum Society  

    A new wavelet-based method for detection of high impedance faults

    , Article 2005 International Conference on Future Power Systems, Amsterdam, 16 November 2005 through 18 November 2005 ; Volume 2005 , 2005 ; 9078205024 (ISBN); 9789078205029 (ISBN) Mokhtari, H ; Aghatehrani, R ; Sharif University of Technology
    IEEE Computer Society  2005
    Abstract
    Detecting high impedance faults is one of the challenging issues for electrical engineers. Over-current relays can only detect some of the high impedance faults. Distance relays are unable to detect faults with impedance over 100Ω. In this paper, by using an accurate model for high impedance faults, a new wavelet-based method is presented. The proposed method, which employs a 3 level neural network system, can successfully differentiate high impedance faults from other transients. The paper also thoroughly analyzes the effect of choice of mother wavelet on the detection performance. Simulation results which are carried out using PSCAD/EMTDC software are summarized  

    Electrodeposition of the Ni-Cr Alloy by Pulse Plating

    , M.Sc. Thesis Sharif University of Technology Imanieh, Iman (Author) ; Dolati, Abolghasem (Supervisor) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    In this thesis, the hardness of Ni-Cr alloys is optimized by design of experiment (DOE) method (Central Composite Design) in pulse electrodeposition performed in chloride solution. Various parameters were evaluated for finding significant factors in pulse electrodeposition of Ni-Cr alloy. Frequency, duty cycle, current density and temperature were selected as effective factors. 30 experiments were designed by the central composite design method. Analyses of Variance (ANOVA) were performed on the results of these 30 experiments. The best models which can predict the hardness, Cr content, deposition rate, thickness and cathode efficiency of Ni-Cr alloy electrodeposits were found and... 

    Electrodeposition of the Ni-P by Pulse Plating

    , M.Sc. Thesis Sharif University of Technology Kazerooni, Amir (Author) ; Dolati, Abolghasem (Supervisor)
    Abstract
    Ni-P alloy coatings were electrodeposited using pulse current in a watt type bath in various conditions. The influences of different parameters were investigated and optimized for the highest amount of coating hardness using the Design Of Experiment (DOE) method. The optimized deposition parameters were current density 23.7 A/dm2, duty cycle 75%, frequency equal to 188 Hz, temperature equal to 70ºC and 17.5 gr/l of H3PO3. The DOE prediction of hardness for the optimized coatings was between 700 and 750 the achieved micro-hardness was about 725.8 HV. It was obtained that an increase of the current density will improve micro-hardness, decreases P content and increase deposition rate. Also, the... 

    Modeling the Hysteresis Characteristic of Power Transformer Core for the Assessment of Inrush Current and Providing a Method to Reduce this Current

    , M.Sc. Thesis Sharif University of Technology Hassani Kaboutarkhani, Reza (Author) ; Vakilian, Mehdi (Supervisor)
    Abstract
    Inrush current as an inherent phenomena in transformer energizing cause to dramatic increase in current which flow through windings of transformer in first periods of energizing. first peak of inrush current can exceed even to several orders of nominal current but it decrease with time and at last after damping process it reaches to nominal currents. In large transformer this time can exceed to several minutes and cause damage to winding insulation, mechanical defects, wrong response of protection system and interrupting loads. Magnitude of this current has a close relation with residual flux. In this thesis a method for calculation of inrush current in single phase and three phase... 

    An Investigation on the Pulse Electrodeposition of Ni-TiO2/TiO2 Multilayer Structures

    , Ph.D. Dissertation Sharif University of Technology Baradaran Mohajeri, Soha (Author) ; Dolati, Abolghasem (Supervisor) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    Electrocodeposition of Ni-TiO2 nanocomposite single layers and Ni-TiO2/TiO2 multilayers from Watts bath containing TiO2 sol has been carried out on copper substrate. Cyclic voltammetry and chronoamperometry techniques were applied to study the influence of nickel sulfate and TiO2 sol concentrations on the electrochemical behavior of Ni-TiO2 deposition by direct current. The results clearly showed that at lower sulfate concentrations, the electrodepostion is a diffusion controlled process. Besides, the nucleation mechanism of the nanocomposites at low overpotentials followed the progressive system while at higher overpotentials, it was found to be instantaneous with three-dimensional growth... 

    Experimental Investigation of the Effects of Canard Position on the Flowfield Over the Wing of a Model

    , M.Sc. Thesis Sharif University of Technology Izadkhah, Mohammad (Author) ; Soltani, Mohammad Reza (Supervisor)
    Abstract
    The analysis results of air combat simulations explain fighters succeed at close air combat that are super maneuverable and at high angle of attack controllable. Closed-coupled delta wing/canard configurations play an important role in modern aircraft design. These configurations offer high trimmed lift, improved agility and maneuverability as well, as a potential for increased lift-to drag ratio, all of which make them attractive to study. Experiments were carried out in a subsonic closed circuit wind tunnel over a delta wing model under the influence of canard. Canard was set in two different vertical positions, high and mid, with respect to the wing location. Flowfield measurements were... 

    Critical Current Density Improvement in Type II Superconductors by Modifying the Type, Size and the Patterns of Pinning Centers

    , M.Sc. Thesis Sharif University of Technology Nazifi Takantapeh, Rana (Author) ; Vesaghi, Mohammad Ali (Supervisor) ; Fardmanesh, Mehdi (Supervisor)
    Abstract
    Motion of magnetic flux, as a result of exerting electrical current, causes dissipation and voltage difference in the type II superconducting slab. So fixing these vortices by pinning centers will increase the critical current . Enhancing the critical current by different kinds of pinning centers is interesting for a lot of theoretical and experimental research groups. At first in this project dynamics of vortices in a triangular lattice is investigated by changing the pinning force. For the case of fp=2f0 we have seen two phase transition in velocity-force plot. And also a practical pinning array of parallel lines is presented. The effect of pinning force, pinning potential width and the... 

    Design and Analysis of DC-DC and DC-AC Photovoltaic Converter

    , M.Sc. Thesis Sharif University of Technology Sadeghpour, Danial (Author) ; Atarodi, Mojtaba (Supervisor) ; Zolghadri, Mohammad Reza (Supervisor)
    Abstract
    Over the past decade there has been dramatic increase in fossil fuel’s usage; As a consequence, world now faces problems such as: air pollution, climate change, global warming and ozone layer depletion. In addition, depletion of the fossil energy resources is growing as a serious issue. Renewable energy(RE) sources are the most promising solution to these problems. Global investment in clean energy was increased by 16% in 2014 and solar power is anticipated to become the world’s largest source of electricity by 2050 .The German government has planned to achieve a goal of 8 percent renewables for gross power consumption by 2050 .RE is still more expensive than traditional one and faces a... 

    Index for characterizing wettability of reservoir rocks based on spontaneous imbibition recovery data

    , Article Energy and Fuels ; Vol. 27, issue. 12 , November , 2013 , p. 7360-7368 ; ISSN: 08870624 Mirzaei-Paiaman, A ; Masihi, M ; Standnes, D. C ; Sharif University of Technology
    Abstract
    An index for characterizing wettability of reservoir rocks is presented using slope analysis of spontaneous imbibition recovery data. The slope analysis is performed using the known exact analytical solution to infinite acting period of counter-current spontaneous imbibition. The proposed theoretically based wettability index offers some advantages over existing methods: (1) it is a better measure of the spontaneous imbibition potential of rock (because the magnitude is directly proportional to the imbibition rate); (2) there is no need for forced displacement data; (3) there is no need for waiting until the spontaneous imbibition process ceases completely; and (4) the data needed to run the... 

    Magnetoelastic instability of a long graphene nano-ribbon carrying electric current

    , Article Advances in Applied Mathematics and Mechanics ; Vol. 6, issue. 3 , 2014 , pp. 299-306 ; ISSN: 20700733 Firouz-Abadi, R. D ; Mohammadkhani, H ; Sharif University of Technology
    Abstract
    This paper aims at investigating the resonance frequencies and stability of a long Graphene Nano-Ribbon (GNR) carrying electric current. The governing equation of motion is obtained based on the Euler-Bernoulli beam model along with Hamilton's principle. The transverse force distribution on the GNR due to the interaction of the electric current with its own magnetic field is determined by the Biot-Savart and Lorentz force laws. Using Galerkin's method, the governing equation is solved and the effect of current strength and dimensions of the GNR on the stability and resonance frequencies are investigated  

    Index for characterizing wettability of reservoir rocks based on spontaneous imbibition recovery data

    , Article Energy and Fuels ; Volume 27, Issue 12 , November , 2013 , Pages 7360-7368 ; 08870624 (ISSN) Mirzaei Paiaman, A ; Masihi, M ; Standnes, D. C ; Sharif University of Technology
    2013
    Abstract
    An index for characterizing wettability of reservoir rocks is presented using slope analysis of spontaneous imbibition recovery data. The slope analysis is performed using the known exact analytical solution to infinite acting period of counter-current spontaneous imbibition. The proposed theoretically based wettability index offers some advantages over existing methods: (1) it is a better measure of the spontaneous imbibition potential of rock (because the magnitude is directly proportional to the imbibition rate); (2) there is no need for forced displacement data; (3) there is no need for waiting until the spontaneous imbibition process ceases completely; and (4) the data needed to run the... 

    Time-Variant evaluation of electromagnetic forces on transformer windings during inrush current and short-circuit by FEM

    , Article Arabian Journal for Science and Engineering ; Volume 38, Issue 4 , 2013 , Pages 883-893 ; 13198025 (ISSN) Eslami, A ; Vakilian, M ; Sharif University of Technology
    2013
    Abstract
    Time-variant axial and radial electromagnetic for ces under inrush current and short-circuit current are calculated (by finite element method; FEM) and compared. A simplified analytic method is presented for computation of inrush current in transformer. The simulation results obtained by this method are compared with the measured values. A compact three-phase, core-type 132/20 KV, 30 MVA, power transformer is modeled, employing two-dimensional (2D) FEM, the different forces under short-circuit and inrush current conditions are evaluated as a function of time. The simulation results for this sample transformer show that the inrush current axial force is larger than clamping force (which is... 

    Flux-based modeling of inductive shield-type high-temperature superconducting fault current limiter for power networks

    , Article IEEE Transactions on Applied Superconductivity ; Volume 21, Issue 4 , 2011 , Pages 3458-3464 ; 10518223 (ISSN) Hekmati, A ; Vakilian, M ; Fardmanesh, M ; Sharif University of Technology
    Abstract
    Distributed power generation and the ever-growing load demand have caused fault current levels to exceed the nominal rating of the power system devices, and fault current limiters are more needed. Superconducting fault current limiter (SFCL) forms an important category of current limiters. In this paper, a novel flux-based model for the inductive shield-type high-temperature SFCL is developed based on the Bean model. This model is employed to simulate the SFCL performance in a sample circuit. Utilizing the model, the signal characterization of the limited current is determined. A prototype laboratory scale SFCL has been fabricated with superconducting rings. Yttrium barium copper oxide... 

    Design, analysis and implementation of class-E ZCS/ZCDS power amplifier for any duty ratio with nonlinear output parasitic capacitance

    , Article Analog Integrated Circuits and Signal Processing ; Volume 89, Issue 1 , 2016 , Pages 185-195 ; 09251030 (ISSN) Lotfi, A ; Medi, A ; Sharif University of Technology
    Springer New York LLC 
    Abstract
    This paper gives the design and analysis approaches for the class-E power amplifier with a shunt inductor under the nominal conditions, i.e., zero-current switching (ZCS) and zero-current derivative switching (ZCDS), with taking into account the MOSFET nonlinear output parasitic capacitance at any duty ratio. Although, the class-E ZCS/ZCDS conditions obtained high-efficiency, but the switch-current waveform affected by the slope of the voltage across the MOSFET nonlinear drain-to-source parasitic capacitance during the switch-off state, which restricted the operating frequency. On the other hand, the duty ratio is an adjustment parameter to obtain high-frequency operation. Therefore, the... 

    HAZ softening behavior of strain-hardened Al-6.7Mg alloy welded by GMAW and pulsed GMAW processes

    , Article International Journal of Advanced Manufacturing Technology ; Volume 92, Issue 5-8 , 2017 , Pages 2255-2265 ; 02683768 (ISSN) Hadadzadeh, A ; Mahmoudi Ghaznavi, M ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    Gas metal arc welding (GMAW) process was used to weld plates of strain-hardened Al-6.7Mg alloy. It was observed that HAZ softening issue occurred extensively for the current material using the GMAW process. So, as a solution, pulsed current was employed and the plates were welded by pulsed GMAW (PGMAW) process. The effects of peak current (93, 120, 140, and 160 A) and pulse frequency (0.5, 2.0, and 5.0 Hz) on the strength of the weldments were investigated. For high peak currents (160 A), catastrophic defects were formed in the weld metal. It was observed that for the lowest pulse frequency (0.5 Hz), increasing the peak current increased the weld strength. The peak current did not change the... 

    Outside nominal operation analysis and design considerations of inverse-class-E power amplifier

    , Article IEEE Journal of Emerging and Selected Topics in Power Electronics ; 2017 ; 21686777 (ISSN) Lotfi, A ; Ershadi, A ; Medi, A ; Hayati, M ; Kazimierczuk, M. K ; Sekiya, H ; Katsuki, A ; Kurokawa, F ; Sharif University of Technology
    Abstract
    In this paper, design and analysis using analytical expressions for the inverse class-E power amplifier (PA) operating at the outside nominal operation, i.e., class-En PA, is presented. This operation is defined as non-zero current switch (n-ZCS) and non-zero derivative current switch (n-ZDCS) conditions. The generalized design equations as a function of design specifications, load-resistance and a given dc-supply voltage are derived. Two degrees of the design freedom achieved thanks to n-ZCS and n-ZDCS that are utilized for the simultaneous satisfaction of design specifications, such as peakswitch- voltage and peak-switch-current along with a given loadresistance. The output power... 

    A modified indirect model predictive control for modular multilevel converters

    , Article 2017 25th Iranian Conference on Electrical Engineering, ICEE 2017, 2 May 2017 through 4 May 2017 ; 2017 , Pages 1366-1371 ; 9781509059638 (ISBN) Razani, R ; Ravanji, M. H ; Parniani, M ; Sharif University of Technology
    Abstract
    Modular multilevel converter (MMC) is among the promising topologies used in high-voltage/power purposes, especially for high-voltage direct-current (HVDC) transmission systems. In this paper, a modified model predictive control (MPC) strategy for an MMC-HVDC system is presented. In the proposed MPC strategy, output current, circulating current and capacitors voltage are controlled separately. In order to reduce the computational burden of the controller, the output current is controlled directly without any optimization. For suppression of the circulating current, capacitors voltage variations are employed to settle the converter arms voltages to their reference values. In addition, the...