Loading...
Search for: cylinders--shapes
0.017 seconds
Total 152 records

    Coloring the square of products of cycles and paths

    , Article Journal of Combinatorial Mathematics and Combinatorial Computing ; Volume 76 , 2011 , Pages 101-119 ; 08353026 (ISSN) Mahmoodian, E. S ; Mousavi, F. S ; Sharif University of Technology
    2011
    Abstract
    The square G2 of a graph G is a graph with the same vertex set as G in which two vertices are joined by an edge if their distance in G is at most two. For a graph G, χ[G2), which is also known as the distance two coloring number of G is studied. We study coloring the square of grids Pm□Pn, cylinders Pm□C n, and tori Cm□Cn. For each m and n we determine χ((Pm□Pn)2), χ(P m□Cn)2), and in some cases χ((C m□Cn)2) while giving sharp bounds to the latter. We show that χ((Cm□Cn)2) is at most 8 except when m -n = 3, in which case the value is 9. Moreover, we conjecture that for every m (m ≥ 5) and n (n ≥ 5), we have, 5 ≤ χ((Cm□Cn)2) ≤ 7  

    The effect of transverse steel and FRP jacket confinement on mechanical properties of concrete cylinders: An experimental study

    , Article ISEC 2011 - 6th International Structural Engineering and Construction Conference: Modern Methods and Advances in Structural Engineering and Construction ; 2011 , Pages 827-832 ; 9789810879204 (ISBN) Khaloo, A. R ; Javid, Y ; Khosravi, H ; Yazdani S ; Cheung S. O ; Singh A ; Ghafoori N ; American Society of Civil Engineers (ASCE); Architectural Institute of Japan (AIJ); Chartered Institute of Building (CIOB); et al.; University of Nevada Las Vegas (UNLV), College of Engineering; Wayne State College of Engineering ; Sharif University of Technology
    Abstract
    This paper presents the results of an experimental study on the behavior of concrete cylinders externally wrapped with fiber-reinforced polymer (FRP) composites and internally reinforced with steel spirals. The experimental work was performed by testing 30 concrete cylinders (120 × 400mm2) subjected to pure compression to achieve the complete stress-strain curve. Test specimens were confined with various internal and external confinement ratios and different types of confining material such as steel, Carbon FRP (CFRP) and Glass FRP (GFRP). The compressive strength, corresponding strain and the complete stress-strain curve of the tested specimenswere indicated. The test results showthat the... 

    Acoustic scattering from submerged laminated composite cylindrical shells

    , Article Composite Structures ; Volume 128 , September , 2015 , Pages 395-405 ; 02638223 (ISSN) Rajabi, M ; Ahmadian, M. T ; Jamali, J ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    The scattering of an oblique plane progressive monochromatic acoustic field upon a laminated composite cylindrical shell is studied based on the three-dimensional exact equations of anisotropic elasticity. Each layer of laminated structure is made of helically filament wound (fiber reinforced) homogeneous material whose degree of anisotropy is considered as monoclinic type. An approximate laminate model along with the local transfer matrix solution is used to solve the state space governing formulation within each layer. Considering the perfect bonding between the adjacent layers, the global transfer matrix is constructed as the product of the local transfer matrices employed to solve for... 

    Application of third order shear deformation theory in buckling analysis of 2D-functionally graded cylindrical shell reinforced by axial stiffeners

    , Article Composites Part B: Engineering ; Volume 79 , September , 2015 , Pages 236-253 ; 13598368 (ISSN) Satouri, S ; Kargarnovin, M. H ; Allahkarami, F ; Asanjarani, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    This paper presents buckling analysis of a two-dimensional functionally graded cylindrical shell reinforced by axial stiffeners (stringer) under combined compressive axial and transverse uniform distributive load. The shell material properties are graded in the direction of thickness and length according to a simple power law distribution in terms of the volume fractions of the constituents. Primarily, the third order shear deformation theory (TSDT) is used to derive the equilibrium and stability equations. Since there is no closed form solution, the numerical differential quadrature method, (DQM), is applied for solving the stability equations. Initially, the obtained results for an... 

    Different methods for calculating a view factor in radiative applications: Strip to in-plane parallel semi-cylinder

    , Article Journal of Engineering Thermophysics ; Volume 24, Issue 2 , April , 2015 , Pages 169-180 ; 18102328 (ISSN) Hajji, A. R ; Mirhosseini, M ; Saboonchi, A ; Moosavi, A ; Sharif University of Technology
    Maik Nauka-Interperiodica Publishing  2015
    Abstract
    Determining the shape factor is essential for solving radiative heat transfer problems. An important case that has various applications in the heat power plant systems is calculation of the configuration factor between the fins and the in-plane parallel semi-cylinder. In the present work, Monte Carlo method, Cross string method, and analytical solutions were implemented for this problem. Several simulations were performed by varying semi-cylinders radius and different lengths of the fin. Also, the influence of the number of emitting rays and the number of strips was studied. Considering a fin between two tubes, it is found that calculating the view factor between one tube and a fin is... 

    Pore-scale simulation of fluid flow passing over a porously covered square cylinder located at the middle of a channel, using a hybrid MRT-LBM–FVM approach

    , Article Theoretical and Computational Fluid Dynamics ; Volume 29, Issue 3 , 2015 , Pages 171-191 ; 09354964 (ISSN) Salimi, M. R ; Taeibi Rahni, M ; Jam, F ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    A comprehensive study was performed to analyze the unsteady laminar flow characteristics around a porously covered, a fully porous, and a solid squared section cylinder located in the middle of a plane channel. In order to simulate fluid flow inside porous media and porous–fluid interface accurately (minimizing modeling error), the porous region was analyzed in pore scale, using LBM. Additionally, to minimize the LBM-related compressibility error through the porous region, a multi-block multiple relaxation time lattice Boltzmann method (MRT-LBM) was used. Also, to decrease CPU time, a Navier–Stokes flow solver, based on finite volume method and SIMPLE algorithm, was coupled with MRT-LBM to... 

    Evaluation of a pressure splitting formulation for Weakly Compressible SPH: Fluid flow around periodic array of cylinders

    , Article Computers and Mathematics with Applications ; 2016 ; 08981221 (ISSN) Hashemi, M. R ; Manzari, M. T ; Fatehi, R ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this paper, a pressure splitting formulation is proposed for Weakly Compressible SPH (WC-SPH) method and its capability in the suppression of the spurious oscillations is studied by conducting a stability analysis. The proposed formulation is implemented within the framework of a consistent SPH method. The predictions from the theoretical analysis are verified by the results of numerical test-cases. This method is applied to the incompressible fluid flow around periodic array of circular cylinders. The accuracy and the convergence of the results are investigated for benchmark problems. The results are also compared with those of the conventional WC-SPH method. In a similar test-case, the... 

    Mechanical and thermal stresses in FGPPM hollow cylinder due to radially symmetric loads

    , Article Journal of Pressure Vessel Technology, Transactions of the ASME ; Volume 138, Issue 1 , 2016 ; 00949930 (ISSN) Jabbari, M ; Meshkini, M ; Eslami, M. R ; Sharif University of Technology
    Abstract
    In this paper, the general solution of steady-state 1D radially symmetric mechanical and thermal stresses and electrical and mechanical displacements for a hollow thick cylinder made of fluid-saturated functionally graded poro piezoelectric materials (FGPPMs) is developed. The general form of thermal and mechanical boundary conditions is considered on the inside and outside surfaces. A direct method is used to solve the heat conduction equation and nonhomogenous system of partial differential Navier equations, using complex Fourier series and power law functions method. The material properties, except the Poisson ratio, are assumed to depend on the radial variable r and they are expressed as... 

    Nonlinear elasto-plastic analysis of a sandwich cylindrical shell with core plasticity included

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 229, Issue 2 , 2015 , Pages 205-215 ; 09544062 (ISSN) Kargarnovin, M. H ; Shokrollahi, H ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    In this paper, static response of a sandwich cylindrical shell under elasto-plastic deformation is investigated. The faces are made of some isotropic materials and the core is made of an orthotropic material both with linear work hardening behavior. The faces are modeled as thin cylindrical shells obeying the Kirchhoff-Love assumptions. The core material is modeled as a special orthotropic solid in which its in-plane stresses are assumed to be negligible. The Prandtl-Reuss plastic flow theory and von Mises yield criterion are used in the analysis. The governing equations are derived using the principle of virtual displacements. Using Ritz method, the equations are solved for deformation... 

    Development of a 3D program for calculation of multigroup Dancoff factor based on Monte Carlo method in cylindrical geometry

    , Article Annals of Nuclear Energy ; Volume 78 , 2015 , Pages 49-59 ; 03064549 (ISSN) Ghaderi Mazaher, M ; Vosoughi, N ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Evaluation of multigroup constants in reactor calculations depends on several parameters, the Dancoff factor amid them is used for calculation of the resonance integral as well as flux depression in the resonance region in the heterogeneous systems. This paper focuses on the computer program (MCDAN-3D) developed for calculation of the multigroup black and gray Dancoff factor in three dimensional geometry based on Monte Carlo and escape probability methods. The developed program is capable to calculate the Dancoff factor for an arbitrary arrangement of fuel rods with different cylindrical fuel dimensions and control rods with various lengths inserted in the reactor core. The initiative... 

    Heat transfer analysis of a porously covered heated square cylinder, using a hybrid Navier-Stokes-lattice Boltzmann numerical method

    , Article International Journal of Thermal Sciences ; Volume 91 , May , 2015 , Pages 59-75 ; 12900729 (ISSN) Salimi, M. R ; Taeibi Rahni, M ; Jam, F ; Sharif University of Technology
    Elsevier Masson SAS  2015
    Abstract
    In this work, two-dimensional laminar flow and heat transfer across a heated square cylinder, covered by a porous layer in a plane channel have been numerically investigated. The flow and thermal fields inside the porous layer were simulated using BrinkmaneForchmeyer extended Darcy model. Simulations were performed in different Reynolds numbers (Re = 60, 120, 160, and 200), porosities (ω = 0.7, 0.87, and 0.96), solid to fluid thermal conductivity ratios (λR = 10, 200, and 2000) and blockage ratios (BR = 0.5, 0.25 and 0.125). The effects of the mentioned parameters on pressure drop and heat transfer rate were investigated in detail. Also, the contribution of each side of the central squared... 

    Cross-flow vortex induced vibrations of inclined helically straked circular cylinders: An experimental study

    , Article Journal of Fluids and Structures ; Volume 59 , November , 2015 , Pages 178-201 ; 08899746 (ISSN) Zeinoddini, M ; Farhangmehr, A ; Seif, M. S ; Zandi, A. P ; Sharif University of Technology
    Academic Press  2015
    Abstract
    Effects of suppression devices on the vortex induced vibration (VIV) of inclined cylinders appear not to have received previous due attentions. The current paper reports the results of some towing tank experiments on the vortex induced cross-flow vibrations of bare and helically straked cylinders in vertical and inclined arrangements. Rigid test cylinders were mounted on a single degree of freedom elastic support. The inclination angles examined were θ=0°, ±20° and ±45°. The Reynolds number ranged from 4000 to 45. 000 and the reduced velocity from 1 to 16. With all tests the mass ratio and the mass-damping parameters were kept constant.Test results on "inclined bare" and "inclined helically... 

    A data mining approach to compressive strength of CFRP-confined concrete cylinders

    , Article Structural Engineering and Mechanics ; Volume 36, Issue 6 , Dec , 2010 , Pages 759-783 ; 12254568 (ISSN) Mousavi, S. M ; Alavi, A. H ; Gandomi, A. H ; Arab Esmaeili, M ; Gandomi, M ; Sharif University of Technology
    2010
    Abstract
    In this paper, compressive strength of carbon fiber reinforced polymer (CFRP) confined concrete cylinders is formulated using a hybrid method coupling genetic programming (GP) and simulated annealing (SA), called GP/SA, and a robust variant of GP, namely multi expression programming (MEP). Straightforward GP/SA and MEP-based prediction equations are derived for the compressive strength of CFRP-wrapped concrete cylinders. The models are constructed using two sets of predictor variables. The first set comprises diameter of concrete cylinder, unconfined concrete strength, tensile strength of CFRP laminate, and total thickness of CFRP layer. The most widely used parameters of unconfined concrete... 

    Free vibration analysis of multilayered functionally graded composite cylinder

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010 ; Volume 13 , 2010 , Pages 441-450 ; 9780791844502 (ISBN) Kargarnovin, M. H ; Hashemi, M ; Sharif University of Technology
    Abstract
    Free vibration of multilayered composite cylinder which volume fraction of fiber varies according to power law in longitudinal direction has been studied. Rule of mixture model and reverse of that are employed to represent elastic properties of this fibrous functionally graded composite. Straindisplacement relations employed are based on Reissner- Naghdi-Berry's shell theory. The displacement finite element model of the governing equations of motion is derived by writing weak form of them. The Lagrangian shape functions for in-plane displacements and Hermitian shape functions for displacement in normal direction to the surface of mid-plane are utilized by defining a conformal quadrilateral... 

    Thermo-elastic analysis of thick-walled cylinders made of Functionally Graded materials using the strain gradient elasticity

    , Article ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2010, 28 September 2010 through 1 October 2010 ; Volume 2 , 2010 , Pages 1-6 ; 9780791844168 (ISBN) Sadeghi, H ; Baghani, M ; Naghdabadi, R ; Aerospace Division ; Sharif University of Technology
    Abstract
    In this paper, strain gradient thermo-elasticity formulation for Functionally Graded (FG) thick-walled cylinders is presented. Elastic strain energy density function is considered to be a function of gradient of strain tensor in addition to the strain tensor. The material properties are assumed to vary according to power law in radial direction. Using the constitutive equations and equation of equilibrium in the cylindrical coordinates, fourth order non-homogenous governing equation for thermo-elastic analysis of thick-walled FG cylinders subjected to thermal and mechanical loadings is obtained and solved numerically. Results show that the intrinsic length parameter affects the stress... 

    Stress analysis of functionally graded cylinders subjected to thermo-mechanical loads based on Bernstein polynomials

    , Article ASME 2010 International Mechanical Engineering Congress and Exposition, IMECE 2010, Vancouver, BC, 12 November 2010 through 18 November 2010 ; Volume 9 , 2010 , Pages 243-248 ; 9780791844465 (ISBN) Fallah, A ; Mohammadi Aghdam, M ; Pasharavesh, A ; Sharif University of Technology
    Abstract
    Stress analysis of thick walled functionally graded (FG) cylindrical pressure vessels subjected to uniform axisymmetric thermo-mechanical loads is presented using Bernstein polynomials. All thermal and mechanical properties except Poisson's ratio of the FG vessels vary through the thickness with arbitrary functions of the radial coordinate. Based on the thermo-elasticity theory, the first law of thermodynamics and axisymmetric assumption, the governing equations of the semi-coupled thermo-elasticity problem reduce to a set of second order boundary value problem. Galerkin method together with Bernstein polynomials is used to obtain solution for the governing equations. The presented method is... 

    Air pressure dependence of natural-convection heat transfer

    , Article World Congress on Engineering 2010, WCE 2010, London, 30 June 2010 through 2 July 2010 ; Volume 2 , 2010 , Pages 1444-1447 ; 9789881821072 (ISBN) Saidi, M ; Abardeh, R. H ; Sharif University of Technology
    2010
    Abstract
    Heat transfer is one of the prevalent concepts with many usages in different fields of science, industry and so on. In different applications we need more or less to know about this phenomenon. Control of this phenomenon is too important in some cases and we should be aware how to control it. The importance of heat transfer rate and effect of various parameters on it, is a reason of performing this research. Because of changes of air pressure in different applications, we need to know how heat transfer affected by air pressure. In different places air pressure is higher or lower than atmospheric pressure and we can't use more of experimental equations (e.g. Morgan or Churchill-Chu for a... 

    Comparison of natural frequencies of composite cylindrical shells: A squared lattice with its equivalent seamless one

    , Article Proceedings of the ASME Design Engineering Technical Conference, 15 August 2010 through 18 August 2010 ; Volume 5 , 2010 , Pages 835-841 ; 9780791844137 (ISBN) Kargarnovin, M. H ; Jam, J. E ; Hashemian, A. H ; Sharif University of Technology
    Abstract
    Modern Latticed composite materials whose high specific strength and stiffness are utilized in spacecraft and rocket structures to a sufficiently high extent are now widely used in primary airframe structures. In this work a comparison between squared latticed composite cylinder shells and the equivalent hollow cylinder with same weight, outer radius, length and material is done. An analytical equation is derived for natural frequency of square latticed composite shells. The first fifth modes are taken to be compared. The analytical and FEM results are shown and compared to each other. Also, as discussed, the squared lattice cylinder shell reaches to their natural frequencies easily than the... 

    The Flexural instability of spinning flexible cylinder partially filled with viscous liquid

    , Article Journal of Applied Mechanics, Transactions ASME ; Volume 77, Issue 1 , September , 2010 , Pages 1-9 ; 00218936 (ISSN) Firouz Abadi, R. D ; Haddadpour, H ; Sharif University of Technology
    2010
    Abstract
    This paper deals with the flexural instability of flexible spinning cylinders partially filled with viscous fluid. Using the linearized Navier-Stokes equations for the incompressible flow, a two-dimensional model is developed for fluid motion. The resultant force exerted on the flexible cylinder wall as the result of the fluid motion is calculated as a function of lateral acceleration of the cylinder axis in the Laplace domain. Applying the Hamilton principle, the governing equations of flexural motion of the rotary flexible cylinder mounted on general viscoelastic supports are derived. Then combining the equations describing the fluid force on the flexible cylinder with the structural... 

    Nonlinear transient transfinite element thermal analysis of thick-walled FGM cylinders with temperature-dependent material properties

    , Article Meccanica ; Volume 45, Issue 3 , June , 2010 , Pages 305-318 ; 00256455 (ISSN) Azadi, M ; Shariyat, M ; Sharif University of Technology
    2010
    Abstract
    An algorithm for investigation of nonlinear systems by the transfinite element method is presented. Basically, the transformation techniques have been developed for linear systems. Nonlinear transient heat transfer of a thick FGM cylinder with temperature-dependent material properties is investigated in the present paper to clarify the proposed algorithm. Two main novelties of the present research are: (1) incorporating the temperature-dependency of the material properties in the thermal analysis which lead to highly non-linear governing equations and (2) proposing an updating numerical transfinite element procedure to solve the resulted highly nonlinear governing equations. To reduce the...