Loading...
Search for: cytology
0.012 seconds

    Developing hyaluronic acid microgels for sustained delivery of platelet lysate for tissue engineering applications

    , Article International Journal of Biological Macromolecules ; Volume 144 , 2020 , Pages 837-846 Jooybar, E ; Abdekhodaie, M. J ; Karperien, M ; Mousavi, A ; Alvi, M ; Dijkstra, P. J ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Platelet lysate (PL), a blood product that contains high concentrations of growth factors (GFs), can be considered as a cost-effective source of multiple GFs. In this study, hyaluronic acid (HA) based microgels were developed for delivery of PL proteins. Spherical microgel were prepared using a water in oil emulsion method. First, hyaluronic acid was grafted with tyramine groups, after which prepared microdroplets were crosslinked via an enzymatic reaction in the presence of hydrogen peroxide and horseradish peroxidase. Because of electrostatic interactions, these microgels are promising carriers for positively charged proteins entrapment like most of the GFs. When microgels are incubated in... 

    Graphene/Cuo2nanoshuttles with controllable release of oxygen nanobubbles promoting interruption of bacterial respiration

    , Article ACS Applied Materials and Interfaces ; Volume 12, Issue 32 , 2020 , Pages 35813-35825 Jannesari, M ; Akhavan, O ; Madaah Hosseini, H. R ; Bakhshi, B ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    An oxygen nanoshuttle based on a reduced graphene oxide/copper peroxide (rGO/CuO2) nanocomposite has been presented to deliver in situ oxygen nanobubbles (O2 NBs) for combating bacterial infections. In the presence of rGO, the solid source of oxygen (i.e., CuO2) was decomposed (in response to environmental conditions such as pH and temperature) into O2 NBs in a more controllable and long-lasting trend (from 60 to 144 h). In a neutral buffer, the O2 NBs experienced growth and collapse evolutions, creating a dynamic micro-nanoenvironment around the nanocomposite. In addition to effective battling against methicillin-resistant Staphylococcus aureus bacteria, the O2 NBs demonstrated superior... 

    Bioengineering approaches for corneal regenerative medicine

    , Article Tissue Engineering and Regenerative Medicine ; Volume 17, Issue 5 , July , 2020 , Pages 567-593 Mahdavi, S. S ; Abdekhodaie, M. J ; Mashayekhan, S ; Baradaran Rafii, A ; Djalilian, A. R ; Sharif University of Technology
    Korean Tissue Engineering and Regenerative Medicine Society  2020
    Abstract
    Background:: Since the cornea is responsible for transmitting and focusing light into the eye, injury or pathology affecting any layer of the cornea can cause a detrimental effect on visual acuity. Aging is also a reason for corneal degeneration. Depending on the level of the injury, conservative therapies and donor tissue transplantation are the most common treatments for corneal diseases. Not only is there a lack of donor tissue and risk of infection/rejection, but the inherent ability of corneal cells and layers to regenerate has led to research in regenerative approaches and treatments. Methods:: In this review, we first discussed the anatomy of the cornea and the required properties for... 

    Thermal conductivity of the cell membrane in the presence of cholesterol and amyloid precursor protein

    , Article Physical Review E ; Volume 102, Issue 4 , 2020 Rafieiolhosseini, N ; Ejtehadi, M. R ; Sharif University of Technology
    American Physical Society  2020
    Abstract
    The cell membrane is responsible for the transportation of heat between inside and outside the cell. Whether the thermal properties of the cell membrane are affected by the cholesterol concentration or the membrane proteins has not been investigated so far. Although the experimental measurement of the membrane thermal conductivity was not available until very recently, computational methods have been widely used for this purpose. In this study, we carry out molecular dynamics simulations to investigate the relation between the concentration of cholesterol and the thermal conductivity of a model membrane. Our results suggest an increase in the membrane thermal conductivity upon increasing the... 

    MicroRNA profiling reveals important functions of miR-125b and let-7a during human retinal pigment epithelial cell differentiation

    , Article Experimental Eye Research ; Volume 190 , 2020 Shahriari, F ; Satarian, L ; Moradi, S ; Sharifi Zarchi, A ; Günther, S ; Kamal, A ; Totonchi, M ; Mowla, S. J ; Braun, T ; Baharvand, H ; Sharif University of Technology
    Academic Press  2020
    Abstract
    Retinal pigment epithelial (RPE) cells are indispensable for eye organogenesis and vision. To realize the therapeutic potential of in vitro-generated RPE cells for cell-replacement therapy of RPE-related retinopathies, molecular mechanisms of RPE specification and maturation need to be investigated. So far, many attempts have been made to decipher the regulatory networks involved in the differentiation of human pluripotent stem cells into RPE cells. Here, we exploited a highly-efficient RPE differentiation protocol to determine global expression patterns of microRNAs (miRNAs) during human embryonic stem cell (hESC) differentiation into RPE using small RNA sequencing. Our results revealed a... 

    Investigating the effect of reagent parameters on the efficiency of cell lysis within droplets

    , Article Physics of Fluids ; Volume 32, Issue 6 , 2020 Shamloo, A ; Hassani Gangaraj, M ; Sharif University of Technology
    American Institute of Physics Inc  2020
    Abstract
    Cell lysis is an essential primary step in cell assays. In the process of cell lysis, the cell membrane is destroyed and the substances inside the cell are extracted. By utilizing a droplet-based microfluidic platform for cell lysis, the mixer unit that is required for mixing lysis reagents with the cells can be excluded, and thus, the complexity of the fabrication process is reduced. In addition, lysing the cells within the droplets will prevent the cells from exposure to the channel walls, and as a result, cleanliness of the samples and the device is maintained. In this study, cell lysis within the droplets and the parameters affecting the efficiency of this process are investigated using... 

    Investigation of a Novel Microfluidic Device for Label-Free Ferrohydrodynamic Cell Separation on a Rotating Disk

    , Article IEEE Transactions on Biomedical Engineering ; Volume 67, Issue 2 , 2020 , Pages 372-378 Shamloo, A ; Besanjideh, M ; Sharif University of Technology
    IEEE Computer Society  2020
    Abstract
    Negative magnetophoresis is a novel and attractive method for continuous microparticle sorting inside a magnetic medium. In this method, diamagnetic particles are sorted based on their sizes using magnetic buoyancy force and without any labeling process. Although this method provides some attractive features, such as low-cost fabrication and ease of operation, there are some obstacles that adversely affect its performance, especially for biological applications. Most types of magnetic media, such as ferrofluids, are not biocompatible, and the time-consuming process of sample preparation can be threatening to the viability of the cells within the sample. Furthermore, in this method, both the... 

    Enzymatic outside-in cross-linking enables single-step microcapsule production for high-throughput three-dimensional cell microaggregate formation

    , Article Materials Today Bio ; Volume 6 , 2020 Van Loo, B ; Salehi, S. S ; Henke, S ; Shamloo, A ; Kamperman, T ; Karperien, M ; Leijten, J ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Cell-laden hydrogel microcapsules enable the high-throughput production of cell aggregates, which are relevant for three-dimensional tissue engineering and drug screening applications. However, current microcapsule production strategies are limited by their throughput, multistep protocols, and limited amount of compatible biomaterials. We here present a single-step process for the controlled microfluidic production of single-core microcapsules using enzymatic outside-in cross-linking of tyramine-conjugated polymers. It was hypothesized that a physically, instead of the conventionally explored biochemically, controlled enzymatic cross-linking process would improve the reproducibility,... 

    Investigation of the equivalent material properties and failure stress of the re-entrant composite lattice structures using an analytical model

    , Article Composite Structures ; 2020 Veisi, H ; Farrokhabadi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the present study, a novel theoretical model is developed, based on classical laminate theory, to predict the equivalent mechanical properties of the re-entrant lattice structures, which composed of continuous fiber reinforced composite struts. Three main mechanism of stretching, flexing and hinging are considered and a general closed-form formulation is derived to estimate the auxetic honeycomb's elastic and shear modulus as well as Poisson's ratios. In spite of previous studies in which the response of honeycomb structures is modeled using beam theory, here, each strut of unit cell is expressed as a composite laminate with orthotropic mechanical properties and classical laminate theory... 

    An interface–particle interaction approach for evaluation of the co-encapsulation efficiency of cells in a flow-focusing droplet generator

    , Article Sensors (Switzerland) ; Volume 20, Issue 13 , 2020 , Pages 1-17 Yaghoobi, M ; Saidi, M. S ; Ghadami, S ; Kashaninejad, N ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Droplet-based microfluidics offers significant advantages, such as high throughput and scalability, making platforms based on this technology ideal candidates for point-of-care (POC) testing and clinical diagnosis. However, the efficiency of co-encapsulation in droplets is suboptimal, limiting the applicability of such platforms for the biosensing applications. The homogeneity of the bioanalytes in the droplets is an unsolved problem. While there is extensive literature on the experimental setups and active methods used to increase the efficiency of such platforms, passive techniques have received less attention, and their fundamentals have not been fully explored. Here, we develop a novel... 

    Biomimetic proteoglycan nanoparticles for growth factor immobilization and delivery

    , Article Biomaterials Science ; Volume 8, Issue 4 , 2020 , Pages 1127-1136 Zandi, N ; Mostafavi, E ; Shokrgozar, M. A ; Tamjid, E ; Webster, T. J ; Annabi, N ; Simchi, A ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    The delivery of growth factors is often challenging due to their short half-life, low stability, and rapid deactivation. In native tissues, the sulfated residual of glycosaminoglycan (GAG) polymer chains of proteoglycans immobilizes growth factors through the proteoglycans'/proteins' complexation with nanoscale organization. These biological assemblies can influence growth factor-cell surface receptor interactions, cell differentiation, cell-cell signaling, and mechanical properties of the tissues. Here, we introduce a facile procedure to prepare novel biomimetic proteoglycan nanocarriers, based on naturally derived polymers, for the immobilization and controlled release of growth factors.... 

    Numerical and analytical simulation of multilayer cellular scaffolds

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 42, Issue 5 , 2 May , 2020 Khanaki, H. R ; Rahmati, S ; Nikkhoo, M ; Haghpanahi, M ; Akbari, J ; Sharif University of Technology
    Springer  2020
    Abstract
    Due to the advent and maturity of the additive manufacturing technology, it is possible now to construct complex microstructures with unprecedented accuracy. In addition, to the influence of network unit cell types and porosities in recent years, researchers have studied the number of scaffold layers fabricated by additive manufacturing on mechanical properties. The objective of this paper is to assess the numerical and analytical simulations of the multilayer scaffolds. For this purpose, 54 different regular scaffolds with a unit cell composed of multilayer scaffolds were simulated under compressive loading and compared with the analytical relationships based on the Euler–Bernoulli and... 

    Asynchronous downlink massive MIMO networks: A stochastic geometry approach

    , Article IEEE Transactions on Wireless Communications ; Volume 19, Issue 1 , 2020 , Pages 579-594 Sadeghabadi, E ; Azimi Abarghouyi, S. M ; Makki, B ; Nasiri Kenari, M ; Svensson, T ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Massive multiple-input multiple-output (M-MIMO) is recognized as a promising technology for the next generation of wireless networks because of its potential to increase the spectral efficiency. In initial studies of M-MIMO, the system has been considered to be perfectly synchronized throughout the entire cells. However, perfect synchronization may be hard to attain in practice. Therefore, we study a M-MIMO system whose cells are not synchronous to each other, while transmissions in a cell are still synchronous. We analyze an asynchronous downlink M-MIMO system in terms of the coverage probability and the ergodic rate by means of the stochastic geometry tool. For comparison, we also obtain... 

    Milk cholesterol reduction using immobilized Lactobacillus acidophilus ATCC1643 in sodium-alginate

    , Article International Journal of Food Engineering ; Volume 4, Issue 8 , 2008 ; 15563758 (ISSN) Serajzadeh, S ; Alemzadeh, I ; Sharif University of Technology
    Walter de Gruyter GmbH  2008
    Abstract
    Lactobacillus acidophilus is one of the major microorganisms which are famous for their effects on cholesterol. In this study, we have investigated the effect of L. acidophilus ATCC 1643 on removing the milk cholesterol and additionally, we have immobilized L. acidophilus ATCC1643 cells in sodium-alginate and observed its effect on milk cholesterol removing. Also, we have researched about the effect of some factors including: bacteria cells number (both free and immobilized cells) and immobilized cells bead size on cholesterol removing rate and ultimately the extracted results were compared together. The results indicated that free cells could reduce cholesterol to lower than 0.5mg/100ml... 

    The impact of zirconium oxide nanoparticles content on alginate dialdehyde-gelatin scaffolds in cartilage tissue engineering

    , Article Journal of Molecular Liquids ; Volume 335 , 2021 ; 01677322 (ISSN) Ghanbari, M ; Salavati Niasari, M ; Mohandes, F ; Firouzi, Z ; Mousavi, S.-D ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The desire to regenerate and repair native tissues can be immediately performed by multiple tissue engineering procedures. Gelatin and alginate are biocompatible and biodegradable polymers. The addition of ZrO2 nanoparticles (NPs) into the alginate-gelatin hydrogel is considered to improve mechanical and chemical properties. Therefore, nanocomposite hydrogels have been manufactured by the freeze-drying procedure utilizing oxidized alginate-gelatin with ZrO2 NPs as a reinforcement. The fabricated nanocomposite hydrogels were character-ized by FTIR, FESEM, and rheometer. The hydrogels containing a higher ZrO2 NPs content (1.5%) have better mechanical properties than the hydrogels without NPs.... 

    Development and in vitro evaluation of photocurable GelMA/PEGDA hybrid hydrogel for corneal stromal cells delivery

    , Article Materials Today Communications ; Volume 27 , 2021 ; 23524928 (ISSN) Mahdavi, S. S ; Abdekhodaie, M. J ; Mashayekhan, S ; Baradaran Rafii, A ; Kim, K ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Gelatin methacrylate (GelMA) was proved to be a promising bioink for corneal stromal cell delivery. However, GelMA has low mechanical properties which makes it difficult to be suturable and handled for clinical applicattion. In this study, three different ratios of 12.5 % GelMA and 10 % PEGDA were investigated for corneal stromal cells delivery. The mixture containing 75 % GelMA and 25 % PEGDA (75G25P) was found to have reasonable cell viability and suturing strength. Moreover, collagen nanofibers were incorporated into 75G25P hydrogel to improve the mechanical and biomimetic properties of the construct (75G25P-E). A hybrid structure was obtained by injecting the optimized bioink on the... 

    High-throughput, label-free isolation of white blood cells from whole blood using parallel spiral microchannels with u-shaped cross-section

    , Article Biosensors ; Volume 11, Issue 11 , 2021 ; 20796374 (ISSN) Mehran, A ; Rostami, P ; Saidi, M. S ; Firoozabadi, B ; Kashaninejad, N ; Sharif University of Technology
    MDPI  2021
    Abstract
    Rapid isolation of white blood cells (WBCs) from whole blood is an essential part of any WBC examination platform. However, most conventional cell separation techniques are labor-intensive and low throughput, require large volumes of samples, need extensive cell manipulation, and have low purity. To address these challenges, we report the design and fabrication of a passive, label-free microfluidic device with a unique U-shaped cross-section to separate WBCs from whole blood using hydrodynamic forces that exist in a microchannel with curvilinear geometry. It is shown that the spiral microchannel with a U-shaped cross-section concentrates larger blood cells (e.g., WBCs) in the inner... 

    Defining microRNA signatures of hair follicular stem and progenitor cells in healthy and androgenic alopecia patients

    , Article Journal of Dermatological Science ; Volume 101, Issue 1 , 2021 , Pages 49-57 ; 09231811 (ISSN) Mohammadi, P ; Nilforoushzadeh, M. A ; Youssef, K. K ; Sharifi Zarchi, A ; Moradi, S ; Khosravani, P ; Aghdami, R ; Taheri, P ; Hosseini Salekdeh, G ; Baharvand, H ; Aghdami, N ; Sharif University of Technology
    Elsevier Ireland Ltd  2021
    Abstract
    Background: The exact pathogenic mechanism causes hair miniaturization during androgenic alopecia (AGA) has not been delineated. Recent evidence has shown a role for non-coding regulatory RNAs, such as microRNAs (miRNAs), in skin and hair disease. There is no reported information about the role of miRNAs in hair epithelial cells of AGA. Objectives: To investigate the roles of miRNAs affecting AGA in normal and patient's epithelial hair cells. Methods: Normal follicular stem and progenitor cells, as well as follicular patient's stem cells, were sorted from hair follicles, and a miRNA q-PCR profiling to compare the expression of 748 miRNA (miRs) in sorted cells were performed. Further, we... 

    3D distributed modeling of trolling-mode AFM during 2D manipulation of a spherical cell

    , Article Journal of Nanoparticle Research ; Volume 23, Issue 4 , 2021 ; 13880764 (ISSN) Mohammadi, S.Z ; Nejat Pishkenari, H ; Mohammadi Moghaddam, M ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    In this study, a general 3D distributed modeling of Trolling-Mode AFM (TR-AFM) as a nanorobot is presented to analyze the 2D manipulation process of a spherical cell. To this aim, the analysis is categorized into 3 sections. In the first section, 6 deformations of TR-AFM are taken into account, and the standard model of the system is obtained. Moreover, the system is simulated in ANSYS Workbench. The results of modal and transient analyses of the system from both analytical and software methods reveal high agreement, which confirms the accuracy of the presented analytical model. In the second section, by utilizing the 3D derived model, displacement of a spherical yeast single cell (W303)... 

    A new modeling and control scheme for cascaded split-source converter cells

    , Article IEEE Transactions on Industrial Electronics ; 2021 ; 02780046 (ISSN) Montazeri, S. H ; Milimonfared, J ; Zolghadri, M. R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Cascaded split-source inverter (CSSI) is a new single-stage modular multilevel topology. Each cell of this converter converts DC to AC power in the buck or boost operation mode without any additional power switch. This paper develops a design method based on a detailed model for CSSI. This model shows that energy storage elements experience double-fundamental frequency ripples besides high-frequency ones. It accurately calculates voltage gains and capacitor voltage and inductor current ripples. On the other hand, common carrier-based multilevel modulations have been modified in terms of both reference and carrier signals to control the inverter under symmetric and asymmetric conditions. With...