Loading...
Search for: drop-breakup
0.007 seconds
Total 30 records

    Integration of spatial fuzzy clustering with level set for segmentation of 2-D angiogram

    , Article IECBES 2014, Conference Proceedings - 2014 IEEE Conference on Biomedical Engineering and Sciences: "Miri, Where Engineering in Medicine and Biology and Humanity Meet", 8 December 2014 through 10 December 2014 ; December , 2015 , Pages 309-314 ; 9781479940844 (ISBN) Ghalehnovi, M ; Zahedi, E ; Fatemizadeh, E ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Coronary angiography is a vital instrument to detect the prevailing of vascular diseases, and accurate vascular segmentation acts a crucial role for proper quantitative analysis of the vascular tree morphological features. Level set methods are popular for segmenting the coronary arteries, but their performance is related to suitable start-up and optimum setting of regulating parameters, essentially done manually. This research presents a novel fuzzy level set procedure with the objective of segmentation of the coronary artery tree in 2-D X-ray angiography as automatically. It is clever to clearly develop from the early segmentation with spatial fuzzy grouping. The adjusting parameters of... 

    Breakup of microdroplets in asymmetric T junctions

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 87, Issue 5 , 2013 ; 15393755 (ISSN) Samie, M ; Salari, A ; Shafii, M. B ; Sharif University of Technology
    2013
    Abstract
    Symmetric T junctions have been used widely in microfluidics to generate equal-sized microdroplets, which are applicable in drug delivery systems. A newly proposed method for generating unequal-sized microdroplets at a T junction is investigated theoretically and experimentally. Asymmetric T junctions with branches of identical lengths and different cross sections are utilized for this aim. An equation for the critical breakup of droplets at asymmetric T junctions and one for determining the breakup point of droplets are developed. A good agreement was observed between the theories (present and previous) and the experiments  

    Numerical investigation of droplets breakup in a microfluidic T-junction

    , Article Applied Mechanics and Materials ; Volume 110-116 , 2012 , Pages 3269-3277 ; 16609336 (ISSN) ; 9783037852620 (ISBN) Bedram, A ; Moosavi, A ; Int. Assoc. Comput. Sci. Inf. Technol. (IACSIT) ; Sharif University of Technology
    2012
    Abstract
    A Volume of Fluid (VOF) method is used to stdy the breakup of droplets in T-junction geometries. Symmetric T-junctions, which are used to produce equal size droplets and have many applications in pharmacy and chemical industries, are considered. Two important factors namely "breakup time" and "breakup length" that can improve the performance of these systems have been introduced. In addition a novel system which consists of an asymmetric T-junction is proposed to produce unequal size droplets. The effects of the channel width ratio and the capillary number on the size and length of the generated droplets and also the time of the generation have been studied and discussed. For simulation the... 

    Droplet breakup in an asymmetric microfluidic T junction

    , Article European Physical Journal E ; Volume 34, Issue 8 , 2011 ; 12928941 (ISSN) Bedram, A ; Moosavi, A ; Sharif University of Technology
    2011
    Abstract
    Breakup of non-uniform droplets in an asymmetric T junction consisting of an inlet channel and two different-size outlet channels has been investigated numerically. Also, an analytical approach in the limit of the lubrication approximation has been extended to provide some analytical relations to study the system and verify the numerical results. Parameters that are important in the performance of the system have been determined and discussed. Our results indicate that smaller droplets can be produced by increasing the capillary number. As the geometry becomes symmetric the pressure drop decreases. Our results also reveal that the breakup time and the pressure drop for this system are... 

    Simulation of buoyant bubble motion in viscous flows employing lattice Boltzmann and level set methods

    , Article Scientia Iranica ; Volume 18, Issue 2 B , 2011 , Pages 231-240 ; 10263098 (ISSN) Mehravaran, M ; Hannani, S. K ; Sharif University of Technology
    2011
    Abstract
    Recently, a hybrid Lattice Boltzmann Level Set Method (LBLSM) for two-phase incompressible fluids with large density differences, in cases of negligible or a priori known pressure gradients, has been proposed. In the present work, the mentioned LBLSM method is extended to take into account pressure gradient effects. The lattice Boltzmann method is used for calculating velocities, the interface is captured by the level set function, and the surface tension is replaced by an equivalent body force. The method can be applied to simulate two-phase fluid flows with density ratios up to 1000 and viscosity ratios up to 100. In order to validate the method, the evolution and merging of rising bubbles... 

    A Lagrangian-extended finite-element method in modeling large-plasticity deformations and contact problems

    , Article International Journal of Mechanical Sciences ; Volume 51, Issue 5 , 2009 , Pages 384-401 ; 00207403 (ISSN) Khoei, A. R ; Biabanaki, S. O. R ; Anahid, M ; Sharif University of Technology
    2009
    Abstract
    In this paper, a Lagrangian-extended finite-element (FE) method is presented in modeling large-plasticity deformations and contact problems. The technique is used to model arbitrary interfaces in two-dimensional (2D)/three-dimensional (3D) large deformations. The material interfaces are represented independent of the FE mesh and the process is accomplished by integrating enriched elements with a larger number of Gauss points, whose positions are fixed in the element. The large elasto-plastic deformation formulation is employed within the eXtended Finite-Element Method (X-FEM) framework to simulate the nonlinear behavior of materials. The interface between two bodies is modeled by using the... 

    Simulation of incompressible two-phase flows with large density differences employing lattice Boltzmann and level set methods

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 198, Issue 2 , December , 2008 , Pages 223-233 ; 00457825 (ISSN) Mehravaran, M ; Hannani, S. K ; Sharif University of Technology
    2008
    Abstract
    A hybrid lattice Boltzmann and level set method (LBLSM) for two-phase immiscible fluids with large density differences is proposed. The lattice Boltzmann method is used for calculating the velocities, the interface is captured by the level set function and the surface tension force is replaced by an equivalent force field. The method can be applied to simulate two-phase fluid flows with the density ratio up to 1000. In case of zero or known pressure gradient the method is completely explicit. In order to validate the method, several examples are solved and the results are in agreement with analytical or experimental results. © 2008 Elsevier B.V. All rights reserved  

    Prediction of shape and internal structure of the proximal femur using a modified level set method for structural topology optimisation

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 15, Issue 8 , 2012 , Pages 835-844 ; 10255842 (ISSN) Bahari, M. K ; Farahmand, F ; Rouhi, G ; Movahhedy, M. R ; Sharif University of Technology
    Abstract
    A computational framework was developed to simulate the bone remodelling process as a structural topology optimisation problem. The mathematical formulation of the Level Set technique was extended and then implemented into a coronal plane model of the proximal femur to simulate the remodelling of internal structure and external geometry of bone into the optimal state. Results indicated that the proposed approach could reasonably mimic the major geometrical and material features of the natural bone. Simulation of the internal bone remodelling on the typical gross shape of the proximal femur, resulted in a density distribution pattern with good consistency with that of the natural bone. When... 

    Numerical simulation of collision between two droplets in the T-shaped microchannel with lattice Boltzmann method

    , Article AIP Advances ; Volume 6, Issue 11 , 2016 ; 21583226 (ISSN) Merdasi, A ; Ebrahimi, S ; Moosavi, A ; Shafii, M. B ; Kowsary, F ; Sharif University of Technology
    American Institute of Physics Inc 
    Abstract
    In this study, the Lattice Boltzmann Method (LBM) is used to investigate the deformation of two droplets within microfluidic T-junctions (MFTD). In order to increase the accuracy the two immiscible fluids are modeled using the He-Chen-Zhang model. First, this model is applied to ensure that the surface tension effect existing between the droplets and the continuous fluid is properly implemented in the model. Then the collision and merging of the two droplets within the intersection of a T-shaped microchannel is investigated. For generating droplet formation the effects of relevant dimensionless parameters such as the Reynolds, the Weber numbers as well as a collision parameter affecting the... 

    Drop formation from a capillary tube: comparison of different bulk fluid on newtonian drops and formation of newtonian and non-newtonian drops in air using image processing

    , Article International Journal of Heat and Mass Transfer ; Volume 124 , 2018 , Pages 912-919 ; 00179310 (ISSN) Nazari, A ; Zadkazemi Derakhshi, A ; Nazari, A ; Firoozabadi, B ; Sharif University of Technology
    Abstract
    The formation of water drops as a Newtonian fluid and formation of a shear-thinning non-Newtonian fluid, Carboxyl Methyl Cellulose (CMC) from a capillary into different bulk fluids are experimentally investigated. A high speed camera is used to visualize the images of the drops and an image-processing code employed to determine the drop properties from each image. It was found that the properties of the water drops when they are drooped into the liquids bulk fluids such as toluene and n-hexane are almost the same while they differed substantially when they were drooped into the air bulk fluid. It is shown that during the formation of water drop in all three kinds of bulk fluids, the drop...