Loading...
Search for: drug-delivery
0.009 seconds
Total 357 records

    Preparation and biological evaluation of radiolabeled-folate embedded superparamagnetic nanoparticles in wild-type rats

    , Article Journal of Radioanalytical and Nuclear Chemistry ; Volume 287, Issue 1 , January , 2011 , Pages 119-127 ; 02365731 (ISSN) Jalilian, A. R ; Hosseini Salekdeh, S. L ; Mahmoudi, M ; Yousefnia, H ; Majdabadi, A ; Pouladian, M ; Sharif University of Technology
    2011
    Abstract
    In this study, superparamagnetic iron oxide nanoparticles (SPION) embedded by folic acid (SPION-folate) were prepared by a modified co-precipitation method. The structure, size, morphology, magnetic property and relaxivity of the SPION-folate were characterized systematically by means of XRD, VSM, HRSEM and TEM and the interaction between folate and iron oxide (Fe3O 4) was characterized by FT-IR. The particle size was shown to be ≈5-10 nm. To ensure biocompatibility, the interaction of these SPION with mouse connective tissue cells (adhesive) was investigated using an MTT assay. Consequently, gallium-67 labeled nanoparticles ([67Ga]-SPION-folate) were prepared using 67Ga with a high labeling... 

    Poly(citric acid)-block-poly(ethylene glycol) copolymers-new biocompatible hybrid materials for nanomedicine

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 6, Issue 4 , Aug , 2010 , Pages 556-562 ; 15499634 (ISSN) Tavakoli Naeini, A ; Adeli, M ; Vossoughi, M ; Sharif University of Technology
    Abstract
    Linear-dendritic ABA triblock copolymers containing poly(ethylene glycol) (PEG) as B block and hyperbranched poly(citric acid) (PCA) as A blocks were synthesized through polycondensation. The molecular self-assembly of synthesized PCA-PEG-PCA copolymers in water led to formation of nanoparticles and fibers in different sizes and shapes depending on the time and size of PCA blocks. Ten days after dissolving PCA-PEG-PCA copolymers in water, the size of fibers had reached several millimeters. Mixing a water solution of fluorescein as a small guest molecule and PCA-PEG-PCA copolymers led to the encapsulation of fluorescein by products of molecular self-assembly. To investigate their potential... 

    Fabrication of chitosan/poly(lactic acid)/graphene oxide/TiO2 composite nanofibrous scaffolds for sustained delivery of doxorubicin and treatment of lung cancer

    , Article International Journal of Biological Macromolecules ; Volume 110 , 2018 , Pages 416-424 ; 01418130 (ISSN) Samadi, S ; Moradkhani, M ; Beheshti, H ; Irani, M ; Aliabadi, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this work, the synthesized graphene oxide/TiO2/doxorubicin (GO/TiO2/DOX) composites were loaded into the chitosan/poly(lactic acid) (PLA) solutions to fabricate the electrospun chitosan/PLA/GO/TiO2/DOX nanofibrous scaffolds via electrospinning process. The synthesized composites and nanofibers were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Three-factor three-level central composite design was used to determine the influence of PLA to chitosan ratio, TiO2/DOX content and GO/TiO2/DOX content on the release of DOX from nanofibrous scaffolds. Drug loading efficiency and drug release behavior from... 

    Noble metal nanostructures in optical biosensors: basics, and their introduction to anti-doping detection

    , Article TrAC - Trends in Analytical Chemistry ; Volume 100 , 2018 , Pages 116-135 ; 01659936 (ISSN) Malekzad, H ; Sahandi Zangabad, P ; Mohammadi, H ; Sadroddini, M ; Jafari, Z ; Mahlooji, N ; Abbaspour, S ; Gholami, S ; Ghanbarpoor, M ; Pashazadeh, R ; Beyzavi, A ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Nanotechnology has illustrated significant potentials in biomolecular-sensing applications; particularly its introduction to anti-doping detection is of great importance. Illicit recreational drugs, substances that can be potentially abused, and drugs with dosage limitations according to the prohibited lists announced by the World Antidoping Agency (WADA) are becoming of increasing interest to forensic chemists. In this review, the theoretical principles of optical biosensors based on noble metal nanoparticles, and the transduction mechanism of commonly-applied plasmonic biosensors are covered. We review different classes of recently-developed plasmonic biosensors for analytic determination... 

    Multiphysics flow modeling and in vitro toxicity of iron oxide nanoparticles coated with poly(vinyl alcohol)

    , Article Journal of Physical Chemistry C ; Volume 113, Issue 6 , 2009 , Pages 2322-2331 ; 19327447 (ISSN) Mahmoudi, M ; Shokrgozar, M. A ; Simchi, A ; Imani, M ; Milani, A. S ; Stroeve, P ; Vali, H ; Häfeli, U. O ; Bonakdar, S ; Sharif University of Technology
    2009
    Abstract
    This study investigated the behavior of ferrofluids containing superparamagnetic iron oxide nanoparticles (SPION) of various compositions for potential applications in drug delivery and imaging. To ensure biocompatibility, the interaction of these SPION with two cell lines (adhesive and suspended) was also investigated using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) assay. The cell lines studied were primary mouse connective tissue cells (adhesive) and human leukemia cells (suspended). SPION were synthesized with a co-precipitation method under different stirring rates and NaOH molarities. The SPION demonstrated a range of magnetic saturations due to their... 

    Microfluidic devices with gold thin film channels for chemical and biomedical applications: a review

    , Article Biomedical Microdevices ; Volume 21, Issue 4 , 2019 ; 13872176 (ISSN) Ghasemi Toudeshkchoui, M ; Rabiee, N ; Rabiee, M ; Bagherzadeh, M ; Tahriri, M ; Tayebi, L ; Hamblin, M. R ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    Microfluidic systems (MFS) provide a range of advantages in biomedical applications, including improved controllability of material characteristics and lower consumption of reagents, energy, time and money. Fabrication of MFS employs various materials, such as glass, silicon, ceramics, paper, and metals such as gold, copper, aluminum, chromium and titanium. In this review, gold thin film microfluidic channels (GTFMFC) are discussed with reference to fabrication methods and their diverse use in chemical and biomedical applications. The advantages of gold thin films (GTF) include flexibility, ease of manufacture, adhesion to polymer surfaces, chemical stability, good electrical conductivity,... 

    Inorganic nanomaterials for chemo/photothermal therapy: a promising horizon on effective cancer treatment

    , Article Biophysical Reviews ; Volume 11, Issue 3 , 2019 , Pages 335-352 ; 18672450 (ISSN) Khafaji, M ; Zamani, M ; Golizadeh, M ; Bavi, O ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    During the last few decades, nanotechnology has established many essential applications in the biomedical field and in particular for cancer therapy. Not only can nanodelivery systems address the shortcomings of conventional chemotherapy such as limited stability, non-specific biodistribution and targeting, poor water solubility, low therapeutic indices, and severe toxic side effects, but some of them can also provide simultaneous combination of therapies and diagnostics. Among the various therapies, the combination of chemo- and photothermal therapy (CT-PTT) has demonstrated synergistic therapeutic efficacies with minimal side effects in several preclinical studies. In this regard,... 

    Burgeoning polymer nano blends for improved controlled drug release: A review

    , Article International Journal of Nanomedicine ; Volume 15 , March , 2020 , Pages 4363-4392 Maghsoudi, S ; Shahraki, B. T ; Rabiee, N ; Fatahi, Y ; Dinarvand, R ; Tavakolizadeh, M ; Ahmadi, S ; Rabiee, M ; Bagherzadeh, M ; Pourjavadi, A ; Farhadnejad, H ; Tahriri, M ; Webster, T. J ; Tayebi, L ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    With continual rapid developments in the biomedical field and understanding of the important mechanisms and pharmacokinetics of biological molecules, controlled drug delivery systems (CDDSs) have been at the forefront over conventional drug delivery systems. Over the past several years, scientists have placed boundless energy and time into exploiting a wide variety of excipients, particularly diverse polymers, both natural and synthetic. More recently, the development of nano polymer blends has achieved noteworthy attention due to their amazing properties, such as biocompatibility, biodegradability and more importantly, their pivotal role in controlled and sustained drug release in vitro and... 

    Fabrication and characterization of an injectable reinforced composite scaffold for cartilage tissue engineering: An in vitro study

    , Article Biomedical Materials (Bristol) ; Volume 16, Issue 4 , 2021 ; 17486041 (ISSN) Khozaei Ravari, M ; Mashayekhan, S ; Zarei, F ; Sayyahpour, F. A ; Taghiyar, L ; Eslaminejad, M. B ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    There are limitations in current medications of articular cartilage injuries. Although injectable bioactive hydrogels are promising options, they have decreased biomechanical performance. Researchers should consider many factors when providing solutions to overcome these challenges. In this study, we created an injectable composite hydrogel from chitosan and human acellular cartilage extracellular matrix (ECM) particles. In order to enhance its mechanical properties, we reinforced this hydrogel with microporous microspheres composed of the same materials as the structural building blocks of the scaffold. Articular cartilage from human donors was decellularized by a combination of physical,... 

    Green synthesis of PEG-coated MIL-100(Fe) for controlled release of dacarbazine and its anticancer potential against human melanoma cells

    , Article International Journal of Pharmaceutics ; Volume 618 , 2022 ; 03785173 (ISSN) Barjasteh, M ; Vossoughi, M ; Bagherzadeh, M ; Pooshang Bagheri, K ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this study, the potential of using MIL-100(Fe) metal–organic framework (MOF) for loading and controlling the release of dacarbazine (DTIC) was evaluated for in vitro treatment of melanoma. The drug loading was performed during the green synthesis of MIL-100(Fe) in an aqueous media without using any harmful solvents, to obtain MIL-DTIC. The surface of this structure was then coated with polyethylene glycol (PEG) in the same aqueous solution to synthesize MIL-DTIC-PEG. The synthesized samples were characterized using various methods. Their release profile was studied in phosphate-buffered saline (PBS) and simulated cutaneous medium (SCM). The cytotoxicity of DTIC and its nano-MOF... 

    Aptamer hybrid nanocomplexes as targeting components for antibiotic/gene delivery systems and diagnostics: a review

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 4237-4256 Ahmadi, S ; Arab, Z ; Safarkhani, M ; Nasseri, B ; Rabiee, M ; Tahriri, M ; Webster, T. J ; Tayebi, L ; Rabiee, N ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    With the passage of time and more advanced societies, there is a greater emergence and incidence of disease and necessity for improved treatments. In this respect, nowadays, aptamers, with their better efficiency at diagnosing and treating diseases than antibodies, are at the center of attention. Here, in this review, we first investigate aptamer function in various fields (such as the detection and remedy of pathogens, modification of nanoparticles, antibiotic delivery and gene delivery). Then, we present aptamer-conjugated nanocomplexes as the main and efficient factor in gene delivery. Finally, we focus on the targeted co-delivery of genes and drugs by nanocomplexes, as a new exciting... 

    Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing

    , Article Advanced Drug Delivery Reviews ; Volume 123 , 2018 , Pages 33-64 ; 0169409X (ISSN) Mofazzal Jahromi, M. A ; Sahandi Zangabad, P ; Moosavi Basri, S. M ; Sahandi Zangabad, K ; Ghamarypour, A ; Aref, A. R ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    According to the latest report from the World Health Organization, an estimated 265,000 deaths still occur every year as a direct result of burn injuries. A widespread range of these deaths induced by burn wound happens in low- and middle-income countries, where survivors face a lifetime of morbidity. Most of the deaths occur due to infections when a high percentage of the external regions of the body area is affected. Microbial nutrient availability, skin barrier disruption, and vascular supply destruction in burn injuries as well as systemic immunosuppression are important parameters that cause burns to be susceptible to infections. Topical antimicrobials and dressings are generally... 

    Design of experiment, preparation, and in vitro biological assessment of human amniotic membrane extract loaded nanoparticles

    , Article Current Pharmaceutical Biotechnology ; Volume 21, Issue 3 , 2020 , Pages 256-267 Shabani, A ; Atyabi, F ; Khoshayand, M. R ; Mahbod, R ; Cohan, R. A ; Akbarzadeh, I ; Bakhshandeh, H ; Sharif University of Technology
    Bentham Science Publishers  2020
    Abstract
    Background: Human amniotic membrane grafting could be potentially useful in ocular surface complications due to tissue similarity and the presence of factors that reduce inflammation, vascu-larization, and scarring. However, considerations like donor-derived infectious risk and the requirement of an invasive surgery limit the clinical application of such treatments. Moreover, the quick depletion of bioactive factors after grafting reduces the efficacy of treatments. Therefore, in the current study, the possibility of nano delivery of the bioactive factors extracted from the human amniotic membrane to the ocular surface was investigated. Materials and Methods: Nanoparticles were prepared... 

    Biomimetic proteoglycan nanoparticles for growth factor immobilization and delivery

    , Article Biomaterials Science ; Volume 8, Issue 4 , 2020 , Pages 1127-1136 Zandi, N ; Mostafavi, E ; Shokrgozar, M. A ; Tamjid, E ; Webster, T. J ; Annabi, N ; Simchi, A ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    The delivery of growth factors is often challenging due to their short half-life, low stability, and rapid deactivation. In native tissues, the sulfated residual of glycosaminoglycan (GAG) polymer chains of proteoglycans immobilizes growth factors through the proteoglycans'/proteins' complexation with nanoscale organization. These biological assemblies can influence growth factor-cell surface receptor interactions, cell differentiation, cell-cell signaling, and mechanical properties of the tissues. Here, we introduce a facile procedure to prepare novel biomimetic proteoglycan nanocarriers, based on naturally derived polymers, for the immobilization and controlled release of growth factors.... 

    Challenges and future prospects for the delivery of biologics: oral mucosal, pulmonary, and transdermal routes

    , Article AAPS Journal ; Volume 19, Issue 3 , 2017 , Pages 652-668 ; 15507416 (ISSN) Morales, J. O ; Fathe, K. R ; Brunaugh, A ; Ferrati, S ; Li, S ; Montenegro Nicolini, M ; Mousavikhamene, Z ; McConville, J. T ; Prausnitz, M. R ; Smyth, H. D. C ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    Biologic products are large molecules such as proteins, peptides, nucleic acids, etc., which have already produced many new drugs for clinical use in the last decades. Due to the inherent challenges faced by biologics after oral administration (e.g., acidic stomach pH, digestive enzymes, and limited permeation through the gastrointestinal tract), several alternative routes of administration have been investigated to enable sufficient drug absorption into systemic circulation. This review describes the buccal, sublingual, pulmonary, and transdermal routes of administration for biologics with relevant details of the respective barriers. While all these routes avoid transit through the... 

    An in vitro study of bare and poly(ethylene glycol)-co-fumarate-coated superparamagnetic iron oxide nanoparticles: A new toxicity identification procedure

    , Article Nanotechnology ; Volume 20, Issue 22 , 2009 ; 09574484 (ISSN) Mahmoudi, M ; Simchi, A ; Imani, M ; Milani, A. S ; Stroeve, P ; Sharif University of Technology
    2009
    Abstract
    As the use of superparamagnetic iron oxide nanoparticles (SPION) in biomedical applications increases (e.g. for targeting drug delivery and imaging), patients are likely to be exposed to products containing SPION. Despite their high biomedical importance, toxicity data for SPION are limited to date. The aim of this study is to investigate the cytotoxicity of SPION and its ability to change cell medium components. Bare and poly(ethylene glycol)-co-fumarate (PEGF)-coated SPION with narrow size distributions were synthesized. The particles were prepared by co-precipitation using ferric and ferrous salts with a molar Fe3+/Fe2+ ratio of 2. Dulbecco's modified Eagle's medium (DMEM) and primary... 

    Graphene-based nanomaterials in fighting the most challenging viruses and immunogenic disorders

    , Article ACS Biomaterials Science and Engineering ; Volume 8, Issue 1 , 2022 , Pages 54-81 ; 23739878 (ISSN) Ebrahimi, M ; Asadi, M ; Akhavan, O ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Viral diseases have long been among the biggest challenges for healthcare systems around the world. The recent Coronavirus Disease 2019 (COVID-19) pandemic is an example of how complicated the situation can get if we are not prepared to combat a viral outbreak in time, which brings up the need for quick and affordable biosensing platforms and vast knowledge of potential antiviral effects and drug/gene delivery opportunities. The same challenges have also existed for nonviral immunogenic disorders. Nanomedicine is considered a novel candidate for effectively overcoming these worldwide challenges. Among the versatile nanomaterials commonly used in biomedical applications, graphene has recently...