Loading...
Search for: drug-delivery
0.009 seconds
Total 357 records

    Droplet-based microfluidics in biomedical applications

    , Article Biofabrication ; Volume 14, Issue 2 , 2022 ; 17585082 (ISSN) Amirifar, L ; Besanjideh, M ; Nasiri, R ; Shamloo, A ; Nasrollahi, F ; De Barros, N. R ; Davoodi, E ; Erdem, A ; Mahmoodi, M ; Hosseini, V ; Montazerian, H ; Jahangiry, J ; Darabi, M.A ; Haghniaz, R ; Dokmeci, M.R ; Annabi, N ; Ahadian, S ; Khademhosseini, A ; Sharif University of Technology
    IOP Publishing Ltd  2022
    Abstract
    Droplet-based microfluidic systems have been employed to manipulate discrete fluid volumes with immiscible phases. Creating the fluid droplets at microscale has led to a paradigm shift in mixing, sorting, encapsulation, sensing, and designing high throughput devices for biomedical applications. Droplet microfluidics has opened many opportunities in microparticle synthesis, molecular detection, diagnostics, drug delivery, and cell biology. In the present review, we first introduce standard methods for droplet generation (i.e. passive and active methods) and discuss the latest examples of emulsification and particle synthesis approaches enabled by microfluidic platforms. Then, the applications... 

    Engineered hyaluronic acid-decorated niosomal nanoparticles for controlled and targeted delivery of epirubicin to treat breast cancer

    , Article Materials Today Bio ; Volume 16 , 2022 ; 25900064 (ISSN) Mansoori Kermani, A ; Khalighi, S ; Akbarzadeh, I ; Niavol, F. R ; Motasadizadeh, H ; Mahdieh, A ; Jahed, V ; Abdinezhad, M ; Rahbariasr, N ; Hosseini, M ; Ahmadkhani, N ; Panahi, B ; Fatahi, Y ; Mozafari, M ; Kumar, A. P ; Mostafavi, E ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Targeted drug delivery systems using nanocarriers offer a versatile platform for breast cancer treatment; however, a robust, CD44-targeted niosomal formulation has not been developed and deeply studied (both in vitro and in vivo) yet. Here, an optimized system of epirubicin (Epi)-loaded niosomal nanoparticles (Nio) coated with hyaluronic acid (HA) has been engineered for targeting breast cancer cells. The nanoformulation was first optimized (based on size, polydispersity index, and entrapment efficiency); then, we characterized the morphology, stability, and release behavior of the nanoparticles. Epirubicin release from the HA-coated system (Epi-Nio-HA) showed a 21% (acidic buffer) and 20%... 

    Synthesis and characterization of magnetic hybrid nanomaterials via RAFT polymerization: A pH sensitive drug delivery system

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 174 , 2019 , Pages 153-160 ; 09277765 (ISSN) Pourjavadi, A ; Kohestanian, M ; Shirzad, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Herein, a facile and versatile method for the synthesis of a novel magnetic nanocarrier via surface- initiated reversible addition-fragmentation chain transfer (RAFT) polymerization is introduced. At first, RAFT agent was successfully attached to the surface of Fe 3 O 4 nanoparticles and, then, poly (glycidyl methacrylate) (PGMA) chains were grown and anchored onto the surface of Fe 3 O 4 nanoparticles. At the end, hydrazine (Hy) groups were introduced to the PGMA chains via reaction between epoxy rings and hydrazine molecules. Doxorubicin (DOX) was covalently conjugated to the prepared nanocarrier (Fe 3 O 4 @PGMA@Hy) through a hydrazone linkage. The in vitro drug release of Fe 3 O 4... 

    Magnetic nanoparticles-loaded PLA/PEG microspheres as drug carriers

    , Article Journal of Biomedical Materials Research - Part A ; Vol. 103, issue. 5 , SEP , 2014 , p. 1893-1898 Frounchi, M ; Shamshiri, S ; Sharif University of Technology
    Abstract
    Surface-modified magnetite (Fe3O4) nanoparticles with an average size of 22 nm were prepared. The nanoparticles had a saturation magnetization of 50.7 emu g-1. Then magnetite and drug-loaded microspheres of poly (lactic acid)/poly (ethylene glycol) were prepared at various compositions. The microspheres were spherical in shape and had smooth surface. The diameter size of the microspheres ranged between about 0.2 and 4 μm. Doxorubicin hydrochloride for cancer treatment was the drug that loaded into the microspheres. The prepared microspheres were characterized by FTIR, XRD, VSM, SEM and drug-release measurements. It was found that the drug cumulative release percentage was proportional to... 

    A possible anticancer drug delivery system based on carbon nanotube-dendrimer hybrid nanomaterials

    , Article Journal of Materials Chemistry ; Volume 21, Issue 39 , 2011 , Pages 15456-15463 ; 09599428 (ISSN) Mehdipoor, E ; Adeli, M ; Bavadi, M ; Sasanpour, P ; Rashidian, B ; Sharif University of Technology
    2011
    Abstract
    Iron oxide nanoparticles, γ-Fe2O3NP, were deposited onto the surface of multi-walled carbon nanotubes and CNT/γ-Fe2O3NP hybrid nanomaterials were obtained. Then linear-dendritic ABA type block copolymers consisting of polyethylene glycol as B block and poly(citric acid) as A block, PCA-PEG-PCA, were synthesized and cisplatin (cis-diamminedichloroplatinum (CDDP) - a platinum-based chemotherapy drug) was conjugated with their carboxyl functional groups and CDDP/PCA-PEG-PCA anticancer prodrugs were prepared. Noncovalent interactions between CDDP/PCA-PEG-PCA anticancer prodrugs and CNT/γ-Fe2O3NP hybrid nanomaterials led to CDDP/PCA-PEG-PCA/CNT/γ-Fe2O3NP drug delivery systems. There are several... 

    The effect of hematocrit and nanoparticles diameter on hemodynamic parameters and drug delivery in abdominal aortic aneurysm with consideration of blood pulsatile flow

    , Article Computer Methods and Programs in Biomedicine ; Volume 195 , October , 2020 Jafarzadeh, S ; Nasiri Sadr, A ; Kaffash, E ; Goudarzi, S ; Golab, E ; Karimipour, A ; Sharif University of Technology
    Elsevier Ireland Ltd  2020
    Abstract
    Background and Objective: The present article has simulated to investigate the efficient hemodynamic parameters, the drug persistence, and drug distribution on an abdominal aortic aneurysm. Methods: Blood as a non-Newtonian fluid enters the artery acting as a real pulse waveform; its behavior is dependent on hematocrit and strain rate. In this simulation of computational fluid dynamic, magnetic nanoparticles of iron oxide which were in advance coated with the drug, are injected into the artery during a cardiac cycle. A two-phase model was applied to investigate the distribution of these carriers. Results: The results are presented for different hematocrits and the nanoparticle diameter. It... 

    Fabrication and Characterization of PVA/PLA Composites

    , M.Sc. Thesis Sharif University of Technology Behnoudfar, Diba (Author) ; Frounchi, Masoud (Supervisor) ; Dadbin, Susan (Supervisor)
    Abstract
    Poly (vinyl alcohol) (PVA) hydrogel is a biocompatible material, which has been widely applied in drug delivery applications. Microspheres, nanospheres, and other types of particle-based drug delivery vehicles have proven capacity for long-term release. There is growing interest to overcoming the inherent pharmacological limitations of hydrogels by formulating particulate systems into the hydrogel matrix to form new delivery platforms. We here describe a simple composite system based on poly (vinyl alcohol) (PVA) hydrogels containing entrapped drug-loaded poly (lactic acid) (PLA) microspheres for controlled delivery over extended period of time. Gamma-Irradiation and freeze-thawing was... 

    Drug Delivery in Cardiovascular System with Multi Scale Approach

    , M.Sc. Thesis Sharif University of Technology Rahmati, Mahmood (Author) ; Vosughi, Manouchehr (Supervisor) ; Saeedi, Mohammad Saeed (Supervisor) ; Firoozabadi, Bahar (Supervisor)
    Abstract
    Particle retention and clearance is a major concern in the treatment of pulmonary diseases. Inhaled materials into the nasal and lung airways include gases/vapors, liquid droplets and soluble/insoluble particulate matter which can be toxic or therapeutic (or both). For example, nanoparticles (NPs), as part of nanomedicine, are now being used as drug carriers for passive and active targeting of solid tumors and inflamed tissue. However, natural and especially manmade NPs can also be harmful, such as carbon nanotubes (CNTs), asbestos fibers and ambient toxic pollutants, based on epidemiological and pathological studies of occupational and environmental exposures. In fact, ultrafine particles... 

    , M.Sc. Thesis Sharif University of Technology Zargarzadeh, Mehrzad (Author) ; Maddah Hosseini, Hamid Reza (Supervisor)
    Abstract
    Age-related macular degeneration (AMD) is the most common cause of vision loss in those aged over 50. There are two main types of AMD, Wet and Dry form. Wet AMD is more severe though more treatable. There are three conventional treatments for AMD including laser therapy, surgery and intravitreal injection of anti-VEGF into the eye. Delivery of drugs to the posterior segment of the eye is still challenging and several implants and devices are currently under investigation for their ability to stimulate the retina, producing visual percepts. The application of intravitreal bevacizumab (Avastin) has expanded tremendously from the time of its introduction into ophthalmic care since 3 years ago.... 

    Synthesis of Nano Ceramic Powders for Drug Delivery and It’s Release

    , M.Sc. Thesis Sharif University of Technology Shahriari, Rezvan (Author) ; Nemati, Ali (Supervisor) ; Dobakhti, Faramarz (Supervisor)
    Abstract
    In this project, Fe3O4 nanoparticles were synthesized and coated with different polymeric materials for drug delivery application. For this purpose, water dispersible oleic acid(OA)- pluronic block copolymer coated magnetite iron oxide nanoparticles were synthesized that can be loaded with proper doses of cephalexin. Our data indicated that formulation of iron oxide nanoparticles was developed by optimizing the amount of oleic acid required to coat iron oxide nanoparticles and then by optimizing the amount of pluronic required to form an aqueous dispersion of oleic acid coated nanoparticles. Synthesis of magnetite nanoparticles was done by the addition of a strong base (NH4OH) to ferrous... 

    Simulation and Optimization of Drug Delivery Methods to Eye

    , M.Sc. Thesis Sharif University of Technology Jooybar, Elaheh (Author) ; Abdekhodaie, Mohammad Jafar (Supervisor) ; Farhadi, Fatollah (Supervisor)
    Abstract
    In this study a mathematical model for intravitreal injection and depositing controlled release systems in the eye to treat posterior segment deseases is developed. The effects of important parameters that play a critical role in drug distribution are also studied.
    Geometrical model is constructed using COMSOL software and governing equations for a 3-D model of drug distribution are solved by finite element method. The geometry is based on the exact dimensions of human eye and retina, choroid and sclera are considered separately. Choroidal losses to the circulatory system and active transport by the retinal pigment epithelium are incorporated as well. Moreover, two types of implant... 

    Synthesis and Characterization of Catalytic Micromotors for Biological Applications

    , M.Sc. Thesis Sharif University of Technology Etemadi, Javid (Author) ; Maddah Hosseini, Hamid Reza (Supervisor)
    Abstract
    Since 1992, many different methods have been introduced and developed according to the type of application of catalytic Janu micromotors in various fields. In this study, the method of particles masking was used to construct magnesium based catalytic micromotors. The stabilizing of magnesium microparticles was carried out in 3 methods, resuspending with PVP, paraffin and static electricity generation on Slides. Finally, all three methods quality was investigated and paraffin stabilizing was best selected for the stability of particles on the slides. After making the micromotors, the effect of several factors, including the amount of sputtering time, PBS medium with different Ph of (7.4 , 6.4... 

    Synthesis and Characterization of Hybrid Smart Nanohydrogel Pluronic-Chitosan/Graphene/Magnetic Nanoparticles with Ability of Drug Release to Cure Cancer

    , M.Sc. Thesis Sharif University of Technology Tohidi, Azadeh (Author) ; Simchi, Abdolreza (Supervisor) ; Askari, Masoud (Supervisor)
    Abstract
    In recent years, many efforts have been made in the field of drug delivery with hydrogel nanoparticles. This class of materials has been at the center of attention in medical science due to their improved physical and biological properties including high amount of water preservation, penetration, bio capampatibility and physical structure similar to outside matrices of tissue. Among various applications in medical sciences, drug delivery based on hydrogels is very attractive. Hydrogels can protect drugs from aggressive environmental factors such as pH and thermal changes, and presence of enzymes. The porosity of hydrogels facilitates drug loading into the gel matrix and provides a... 

    Drug Delivery into the Anterior Segment of the Eye

    , M.Sc. Thesis Sharif University of Technology Alavi Shoushtari, Navid (Author) ; Abdekhodaie, Mohammad Jafar (Supervisor) ; Bastani, Daruosh (Supervisor)
    Abstract
    Transport phenomena i.e. momentum, heat and mass transfer are occurring inside the eye constantly. Any disturbance in each of these could lead to diseases or ocular problems. Konwledge of transport phenomena can help surgeons and specialists to identify problems more easily and cure the problems effectively. Further more, these phenomena have a great impact on drug delivery inside the eye. Therefore deep understanding of them makes investigation of different therapies easy and convenient. Consequently this understanding could lead to choose the best method and route of administration available. A precise model which is in consistence with the real human eye has been developed and the ocular... 

    Some Studies on Conjugation of Nanoparticles Fe3O4 (Fe2O3) to PEG for Drug Delivery Systems

    , M.Sc. Thesis Sharif University of Technology Mohseni Ahooyi, Taha (Author) ; Vossoughi, Manouchehr (Supervisor) ; Yaghmaei, Soheila (Supervisor)
    Abstract
    The main strategy for treating solid cancers is based on the very early diagnosis of a malignant tumor, and in general the smaller the tumor, the greater the likelihood of successful treatment. Magnetic Resonance Imaging (MRI), based on the nuclear magnetic resonance phenomenon, provides the possibility of detecting early malignant tumors with the assistance of appropriate contrast agents. Hence, researchers continue to develop novel magnetic materials to achieve this aim. Superparamagnetic nanoparticles have become the focus of these studies because their superparamagnetic, biocompatible and hydrophilic properties would be revealed after modifying the particle surface by suitable... 

    nvestigation of the Effects of Evaporation, Inlet Momentum, and Spacer on the Transport and Deposition of Pharmaceutical Particles Delivered by a Metered Dose Inhaler (MDI) in Human Upper Airways

    , M.Sc. Thesis Sharif University of Technology Noormandipoor, Mojtaba (Author) ; Saeedi, Mohammad Saeed (Supervisor)
    Abstract
    In this study the transport and deposition of pharmaceutical particles delivered by a commercial metered dose inhaler (MDI) is investigated in a combination of human upper airways, inhaler, and spacer. The emphasis of the present work is on the effects of evaporation of ethanol from particles, inlet momentum of particles, and use of spacer on their transport and deposition phenomena. The pharmaceutical particles are typically delivered with high initial momentum to human upper airways. It is believed that this initial momentum is responsible for increased undesirable deposition of particles in upper airways, especially in case of particles larger than 1 micrometer in diameter. In the present... 

    Comparing Effects of Natural Antibiotics and Anti Bacterial Materials in Burn Wound Infections with Nanoparticles and Skin Scaffold

    , M.Sc. Thesis Sharif University of Technology Ramezani, Bita (Author) ; Alemzadeh, Iran (Supervisor) ; Vosoughi, Manouchehr (Supervisor)
    Abstract
    Burns are one of the most important accidents related to human health. Due to the intense physical and mental complications and high fatality rate associated with them, receiving proper treatment is of paramount importance. The control of infection in wounds would cure and eliminates the effect of wounds and treatment of skin lesions with engineered scaffolds can be an effective method. The purpose of this project is proposing a hydrogel scaffold based on natural polymers of oxidized alginate and gelatin loaded with an herbal drug to control infection and treat burn wounds. For this purpose, the Iranian Oak extract that it's main content is Tanin and PolyPhenolinc materials, was prepared and... 

    Liposome Nanoparticles Synthesis in order to Study the Antibiotic Drug Delivery in Simulated Environment of Body

    , M.Sc. Thesis Sharif University of Technology Bahari, Mohsen (Author) ; Alemzadeh, Iran (Supervisor)
    Abstract
    In recent years, much attention has been paid to the preparation of nanoparticles as carriers for drug delivery. Nanoparticle carriers, by changing the pharmacokinetic properties of the drug, improve the function of the drug and reduce its side effects. In the manufacture of nanoparticles, various materials such as polymers, metal particles, lipids, etc. are used to transfer the drugs, which can produce a different shape and size of the particles depending on their production method. The purpose of this project is the synthesis of liposomal nanoparticles (as nano-carriers) to load an antibiotic (Eucalyptus oil) and study the release of the encapsulated drug in the simulated environment of... 

    Acoustic Streaming for Drug Delivery into Brain Tissue

    , M.Sc. Thesis Sharif University of Technology Boroumand, Ahmad (Author) ; Assempour, Ahmad (Supervisor) ; Ahmadian, Mohammad Taghi (Supervisor)
    Abstract
    Cancer is one of the most critical diseases in the last century. Numerous efforts have been conducted to treat cancer. According to the report of World Health Organization, one death of every six deaths is due to this disease. More than 100 cancer types have been identified. Among these types, CNS tumor is one of the most critical cancer types with high mortality (65.9%). Various methods have been applied to treat this disease, but still, treatment efficiency is low. In this thesis, the effect of ultrasound waves on drug delivery into CNS tumors was evaluated using both experimental and simulation devices. A syringe pump was used to inject the drug solution into tissue-mimicking gels (CED).... 

    Synthesis and Characterization of Wound Dressings based on Alginate-Quince Seed Gum

    , M.Sc. Thesis Sharif University of Technology Abedini, Amir Abbas (Author) ; Pircheraghi, Gholamreza (Supervisor) ; Seyed Reihani, Morteza (Supervisor)
    Abstract
    Quince seed gum is a natural material that was used in Iranian traditional medicine for wound treatment. Alginate is a beneficial biomaterial that has been used in making commercial wound dressings for a long time. In this work, the preparation method and properties of films based on Alginate and Quince seed gum for drug delivery and wound healing have been investigated. According to the obtained results about crosslinking and plasticizing, the suitable condition of synthesis is 0.5% CaCl2 concentration, 2min soaking time, and 13% glycerol in crosslinking solution. In this crosslinking solution, a film with good mechanical properties (tensile strength: 13MPa, elongation: 27.3%, and Young’s...