Loading...
Search for: dynamic-behavior
0.008 seconds
Total 125 records

    On the chaotic vibrations of electrostatically actuated arch micro/nano resonators: a parametric study

    , Article International Journal of Bifurcation and Chaos ; Volume 25, Issue 8 , July , 2015 ; 02181274 (ISSN) Tajaddodianfar, F ; Hairi Yazdi, M. R ; Nejat Pishkenari, H ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2015
    Abstract
    Motivated by specific applications, electrostatically actuated bistable arch shaped micro-nano resonators have attracted growing attention in the research community in recent years. Nevertheless, some issues relating to their nonlinear dynamics, including the possibility of chaos, are still not well known. In this paper, we investigate the chaotic vibrations of a bistable resonator comprised of a double clamped initially curved microbeam under combined harmonic AC and static DC distributed electrostatic actuation. A reduced order equation obtained by the application of the Galerkin method to the nonlinear partial differential equation of motion, given in the framework of Euler-Bernoulli beam... 

    Nonlinear dynamic analysis of a rectangular plate subjected to accelerated/decelerated moving load

    , Article Journal of Theoretical and Applied Mechanics ; Volume 53, Issue 1 , 2015 , Pages 151-166 ; 14292955 (ISSN) Mamandi, A ; Mohsenzadeh, R ; Kargarnovin, M. H ; Sharif University of Technology
    Polish Society of Theoretical and Allied Mechanics  2015
    Abstract
    In this paper, nonlinear dynamical behavior of a rectangular plate traveled by a moving mass as well as an equivalent concentrated force with non-constant velocity is studied. The nonlinear governing coupled partial differential equations (PDEs) of motion are derived by energy method using Hamilton's principle based on the large deflection theory in conjuncture with the von-Karman strain-displacement relations. Then Galerkin's method is used to transform the equations of motion into a set of three coupled nonlinear ordinary differential equations (ODEs) which then is solved in a semi-analytical way to get the dynamical response of the plate. Also, by using the Finite Element Method (FEM)... 

    Analysis of transient response and instability in fiber ring resonators containing an erbium-doped fiber amplifier and quantum dot-doped fiber saturable absorber

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 30, Issue 12 , December , 2013 , Pages 3215-3224 ; 07403224 (ISSN) Tofighi, S ; Bahrampour, A. R ; Sharif University of Technology
    Optical Society of American (OSA)  2013
    Abstract
    In this paper, the transient response of a double coupler fiber ring resonator containing an erbium-doped fiber amplifier (EDFA) in half part of the fiber ring resonator and a quantum dot-doped fiber (QDF) saturable absorber in the other half, is investigated. It is demonstrated that, depending on the device parameters and the input power of the signal and pump, various types of dynamic behaviors (such as bistability, monostability, and regenerative pulsation) can be observed in this intrinsic, optical bistable device. The proposed device can be exploited by optical communication networks to realize all-optical functionalities  

    Effects of crimping on mechanical performance of nitinol stent designed for femoral artery: Finite element analysis

    , Article Journal of Materials Engineering and Performance ; Volume 22, Issue 11 , 2013 , Pages 3228-3236 ; 10599495 (ISSN) Nematzadeh, F ; Sadrnezhaad, S. K ; Sharif University of Technology
    2013
    Abstract
    Nitinol stents are used to minimize improper dynamic behavior, low twistability, and inadequate radial mechanical strength of femoral artery stents. In this study, finite element method is used to investigate the effect of crimping and Austenite finish temperature (A f) of Nitinol on mechanical performance of Z-shaped open-cell femoral stent under crimping conditions. Results show that low A f Nitinol has better mechanical and clinical performance due to small chronic outward force, large radial resistive force, and appropriate superelastic behavior  

    A Three dimensional dynamic CFD simulation for the direct dme production in a fixed bed reactor

    , Article Computer Aided Chemical Engineering ; Volume 32 , June , 2013 , Pages 247-252 ; 15707946 (ISSN) Moradi, F ; Kazemeini, M ; Vafajoo, L ; Fattahi, M ; Sharif University of Technology
    2013
    Abstract
    Dimethyl ether (DME) as a clean fuel seems to be a superior candidate for high-quality diesel fuel in near future. In this study, a comprehensive three-dimensional dynamic heterogeneous model developed to simulate the flow behavior and catalytic coupling reactions for synthesis of the DME from hydrogenation of the CO and CO2, dehydration of methanol to dimethyl ether and water gas shift reaction in a fixed bed reactor. For this purpose, a CFD simulation was articulated where the standard k-ε model with 10% turbulence tolerations implemented. Then the concentration and temperature profiles along the reactor were determined. It was revealed that under conditions considered, a single phase... 

    Strain gradient formulation of functionally graded nonlinear beams

    , Article International Journal of Engineering Science ; Volume 65 , 2013 , Pages 49-63 ; 00207225 (ISSN) Rahaeifard, M ; Kahrobaiyan, M. H ; Ahmadian, M. T ; Firoozbakhsh, K ; Sharif University of Technology
    2013
    Abstract
    In this paper size-dependent static and dynamic behavior of nonlinear Euler-Bernoulli beams made of functionally graded materials (FGMs) is investigated on the basis of the strain gradient theory. The volume fraction of the material constituents is assumed to be varying through the thickness of the beam based on a power law. As a consequence, the material properties of the microbeam (including length scales) are varying in the direction of the beam thickness. To develop the model, the usual simplifying assumption which considers the length scale parameter to be constant through the thickness is avoided and equivalent length scale parameters are introduced for functionally graded microbeams... 

    3D Dynamic analysis of a flexible deploying arm subjected to base angular motions

    , Article International Journal of Structural Stability and Dynamics ; Volume 13, Issue 2 , March , 2013 ; 02194554 (ISSN) Ghaleh, P. B ; Malaek, S. M ; Sharif University of Technology
    2013
    Abstract
    Problems related to the three-dimensional (3D) dynamics of the deploying flexible arms subjected to base angular motions are studied with simulated tip payloads and actual deployment trajectories. To facilitate the solution, an equivalent dynamical system is developed by introducing the inertial reaction forces on the arm, while the equations of motion are derived in the non-Newtonian reference frame attached to the arm. The dynamic behavior of the arm is investigated both by the finite element and assumed Modes methods for the purpose of verification. This study reveals that base angular motions lead to considerable couplings between the two lateral displacements and axial motions.... 

    Dynamic analysis of a functionally graded simply supported Euler-Bernoulli beam subjected to a moving oscillator

    , Article Acta Mechanica ; Volume 224, Issue 2 , 2013 , Pages 425-446 ; 00015970 (ISSN) Rajabi, K ; Kargarnovin, M. H ; Gharini, M ; Sharif University of Technology
    2013
    Abstract
    The dynamic behavior of a functionally graded (FG) simply supported Euler-Bernoulli beam subjected to a moving oscillator has been investigated in this paper. The Young's modulus and the mass density of the FG beam vary continuously in the thickness direction according to the power-law model. The system of equations of motion is derived by using Hamilton's principle. By employing Petrov-Galerkin method, the system of fourth-order partial differential equations of motion has been reduced to a system of second-order ordinary differential equations. The resulting equations are solved using Runge-Kutta numerical scheme. In this study, the effect of the various parameters such as power-law... 

    Static and dynamic analysis of a clamp-clamp nano-beam under electrostatic actuation and detection considering intermolecular forces

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 10 , 2013 ; 9780791856390 (ISBN) Mojahedi, M ; Barari, A ; Firoozbakhsh, K ; Ahmadian, M. T ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    Micro/nano gyroscopes which can measure angular rate or angle are types of merging gyroscope technology with MEMS/NEMS technology. They have extensively used in many fields of engineering, such as automotive, aerospace, robotics and consumer electronics. There are many studies of a variety of gyroscopes with various drive and detect methods and different resonator structures in last years. In case of electrostatically actuated and detected beam micro/nano-gyroscopes, DC voltages are applied in driving and sensing directions and AC voltage is utilized in driving direction in order to excite drive oscillation. The intermolecular surface forces are especially significant when the gyroscopes are... 

    Analysis and enhancement of low-voltage ride-through capability of brushless doubly fed induction generator

    , Article IEEE Transactions on Industrial Electronics ; Volume 60, Issue 3 , March , 2013 , Pages 1146-1155 ; 02780046 (ISSN) Tohidi, S ; Oraee, H ; Zolghadri, M. R ; Shao, S ; Tavner, P ; Sharif University of Technology
    2013
    Abstract
    This paper discusses the dynamic behavior of the brushless doubly fed induction generator during the grid faults which lead to a decrease in the generator's terminal voltage. The variation of the fluxes, back EMFs, and currents are analyzed during and after the voltage dip. Furthermore, two alternative approaches are proposed to improve the generator ride-through capability using crowbar and series dynamic resistor circuits. Appropriate values for their resistances are calculated analytically. Finally, the coupled circuit model and the generator's speed and reactive power controllers are simulated to validate the theoretical results and the effectiveness of the proposed solutions. Moreover,... 

    Mechanical behavior analysis of micro-scaled functionally graded timoshenko beams by the strain gradient theory

    , Article Proceedings of the ASME Design Engineering Technical Conference ; Volume 5 , 2012 , Pages 67-73 ; 9780791845042 (ISBN) Tajalli, S. A ; Kahrobaiyan, M. H ; Rahaeifard, M ; Ahmadian, M. T ; Movahhedy, M. R ; Akbari, J ; Sharif University of Technology
    2012
    Abstract
    In this paper, a size-dependent formulation is developed for Timoshenko beams made of functionally graded materials (FGM). The developed formulation is based on the strain gradient theory;a non-classical continuum theory able to capture the size-effect in micro-scaled structures. Considering the material length scale parameters of the FG beams vary through the thickness, the new equivalent length scale parameters are proposed as functions of the constituents' length scale parameters to describe the size-dependent static and dynamic behavior of FG microbeams. The governing differential equations of equilibrium and both classical and nonclassical sets of boundary conditions are derived for the... 

    Column study of Cr (VI) adsorption onto modified silica-polyacrylamide microspheres composite

    , Article Chemical Engineering Journal ; Volume 210 , 2012 , Pages 280-288 ; 13858947 (ISSN) Karimi, M ; Shojaei, A ; Nematollahzadeh, A ; Abdekhodaie, M. J ; Sharif University of Technology
    2012
    Abstract
    Adsorption of Cr (VI) from aqueous solution was studied using a continuous fixed bed column which is packed with a new micro-porous composite particle developed in this study. This composite particle is composed of silica porous particle in which acrylamide is polymerized within the pore regions of the silica particles. The composite particle was supposed to maintain the mechanical properties of polyacrylamide as efficient absorbent to serve appropriately in the continuous processes. In order to enhance the adsorption capacity of the composite particle, it was modified with ethylenediamine. Scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR) and... 

    Multivariate curve resolution alternating least-squares as a tool for analyzing crude oil extracted asphaltene samples

    , Article Energy and Fuels ; Volume 26, Issue 9 , 2012 , Pages 5663-5671 ; 08870624 (ISSN) Ghatee, M. H ; Hemmateenejad, B ; Sedghamiz, T ; Khosousi, T ; Ayatollahi, S ; Seiedi, O ; Sayyad Amin, J ; Sharif University of Technology
    ACS  2012
    Abstract
    Asphaltene deposition in the early stage of the oil reservoir life and later during any stimulation process emerges critical problems to the petroleum industry. Deposition of asphaltene aggregates raises strict problems in industries and demands markedly a practical and scientific knowledge of the mechanisms of aggregation and precipitation. Fluorescence emission spectroscopy has been widely used to illuminate the fundamental properties of crude oils and asphaltenes. It proposes analysis of some details of equilibrium, dynamic behavior, and aggregation composition of crude oil under specific condition. In this work, the fluorescence spectra of crude-oil extracted asphaltene samples were... 

    Power management strategy for a multi-hybrid fuel cell/energy storage power generation systems

    , Article 2012 3rd Power Electronics and Drive Systems Technology, PEDSTC 2012, 15 February 2012 through 16 February 2012 ; February , 2012 , Pages 354-359 ; 9781467301114 (ISBN) Ghazanfari, A ; Hamzeh, M ; Mokhtari, H ; Sharif University of Technology
    2012
    Abstract
    This paper depicts a new configuration for modular hybrid power conversion systems, namely, multi-hybrid generation system (MHGS), and parallel connection at the output, such that the converter of each unit shares the load current equally. This is a significant step towards realizing a modular power conversion system architecture, where smaller units can be connected in any series/parallel grouping to realize any required unit specifications. The supercapacitor (SC) as a complementary source is used to compensate for the slow transient response of the fuel cell (FC) as a main power source. It assists the FC to meet the grid power demand in order to achieve a better performance and dynamic... 

    Dynamic analysis of human ear during sound transmission

    , Article 3rd international Conference on Manufacturing Science and Engineering, ICMSE 2012, Xiamen, 27 March 2012 through 29 March 2012 ; Volume 472-475 , 2012 , Pages 1215-1219 ; 10226680 (ISSN); 9783037853702 (ISBN) Ghafari, A. S ; Zahiri, S ; Fujian University of Technology; Xiamen University; Fuzhou University; Huaqiao University; University of Wollongong ; Sharif University of Technology
    2012
    Abstract
    The aim of the present research is to simulate dynamic behavior of the human auditoria peripherals during sound transmission using the equivalent six-degrees-of-freedom lumped parameter mathematical model. Transmissibility analysis was employed to get a better insight into the sound transmission from tympanic membrane to malleus, incus, stapes, and cochlea. Furthermore, transmissibility from each member to corresponding adjacent member was carried out to functional analysis of the human ear. Simulation study illustrated that the results are in agreement with the experimental results published in the literature, and the proposed model provides more information in the dynamic analysis of... 

    Application of nonlocal theory in dynamic pull-in analysis of electrostatically actuated micro and nano beams

    , Article Proceedings of the ASME Design Engineering Technical Conference, 28 August 2011 through 31 August 2011, Washington, DC ; Volume 7 , 2011 , Pages 255-261 ; 9780791854846 (ISBN) Ahmadian, M. T ; Pasharavesh, A ; Fallah, A ; Sharif University of Technology
    2011
    Abstract
    One of the most important phenomena related to electrically actuated micro and nano electromechanical systems (MEMSNEMS) is dynamic pull-in instability which occurs when the electrical attraction and beam inertia forces are more than elastic restoring force of the beam. According to failure of classical mechanics constitutive equations in prediction of dynamic behavior of small size systems, nonlocal theory is implemented here to analyze the dynamic pull-in behavior. Equation of motion of an electrostatically actuated micro to nano scale doubly clamped beam is rewritten using differential form of nonlocal theory constitutive equation. To analyze the nonlocal effect equation of motion is... 

    Nonlinear vibration analysis of nano to micron scale beams under electric force using nonlocal theory

    , Article Proceedings of the ASME Design Engineering Technical Conference, 28 August 2011 through 31 August 2011 ; Volume 7 , August , 2011 , Pages 145-151 ; 9780791854846 (ISBN) Pasharavesh, A ; Vaghasloo, Y. A ; Ahmadian, M. T ; Moheimani, R ; Sharif University of Technology
    2011
    Abstract
    Electrostatically actuated beams are fundamental blocks of many different nano and micro electromechanical devices. Accurate design of these devices strongly relies on recognition of static and dynamic behavior and response of mechanical components. Taking into account the effect of internal forces between material particles nonlocal theories become highly important. In this paper nonlinear vibration of a microano doubly clamped and cantilever beam under electric force is investigated using nonlocal continuum mechanics theory. Implementing differential form of nonlocal constitutive equation the nonlinear partial differential equation of motion is reformulated. The equation of motion is... 

    Evaluation of beam steering in circular planar array of coupled microwave oscillators

    , Article International Journal of RF and Microwave Computer-Aided Engineering ; Volume 21, Issue 4 , 2011 , Pages 383-391 ; 10964290 (ISSN) Tooni, S ; Banai, A ; Farzaneh, F ; Sharif University of Technology
    2011
    Abstract
    A Green's function to describe the time behavior of the locking phases in a circular planar array of mutually coupled microwave oscillators is proposed. Using this Green's function the dynamic behavior of the array can be described for any arbitrary free running frequency of elements of the oscillator array. Beam steering is realized via detuning the edge oscillators of the array from a reference frequency and the beam direction is controlled by the amount of detuning for each oscillator at the edge. Some detuning functions such as sinusoidal, triangular and rectangular ones have been applied and, the resulting array patterns are compared with one another  

    A modified DTC for induction motor drive system fed by Indirect Matrix Converter using Active Learning Method

    , Article 2011 2nd Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2011, 16 February 2011 through 17 February 2011 ; February , 2011 , Pages 356-361 ; 9781612844213 (ISBN) Faraji, V ; Aghasi, M ; Khaburi, D. A ; Ghorbani, M. J ; Sharif University of Technology
    2011
    Abstract
    This paper presents a high performance Direct Torque Control (DTC) theme for the induction motor using Indirect Matrix Converter (IMC). To improve the dynamic behavior of motor, Active Learning Method (ALM) is implemented on the DTC. The ALM uses its own modeling technique called the ink drop spread (IDS) method. Functionally the IMC is very similar to the Direct Matrix Converter (DMC) but it has separate line and load bridges. In the inverter stage, the classical DTC method is employed. In the rectifier stage, in order to reduce losses caused by snubber circuit the rectifier four-step commutation method is employed. By suitably selecting switching pattern and using Active Learning Method... 

    Modeling of a planar microrobot using lugre friction model

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010 ; Volume 8, Issue PARTS A AND B , November , 2010 , Pages 633-639 ; 9780791844458 (ISBN) Khodabakhsh, M ; Vossoughi, G. R ; Kamali, A ; Sharif University of Technology
    2010
    Abstract
    Microrobots design and manufacturing has been one of interesting fields in robotics in recent years. Various legged designs have been proposed in the literature. All designs rely on friction for locomotion. In this paper the dynamic model of a planar two-legged microrobot is presented using LuGre friction model. LuGre friction model is more realistic model, reducing uncertainties of the microrobot dynamic model, providing a better prediction for both design and control applications. The proposed microrobot is driven by a piezoelectric actuator mounted between centers of two legs. One of important issues in modeling of microrobots is to determine the friction force between robot and...