Loading...
Search for: eigenvalues
0.01 seconds
Total 243 records

    Hippocampal shape analysis in the Laplace Beltrami feature space for temporal lobe epilepsy diagnosis and lateralization

    , Article Proceedings - International Symposium on Biomedical Imaging ; 2012 , Pages 150-153 ; 19457928 (ISSN) ; 9781457718588 (ISBN) Shishegar, R ; Gandomkar, Z ; Soltaman Zadeh, H ; Moghadasi, S. R ; Sharif University of Technology
    IEEE  2012
    Abstract
    Shape analysis plays an important role in many medical imaging studies. One of the recent shape analysis methods uses the Laplace Beltrami operator which is also used in this paper for hippocampal shape comparison. We proposed a feature vector which consists of size measures and shape descriptors based on Laplace Beltrami eigenvalues and eigenfunctions. The aforementioned feature space is utilised for automatic differentiating normal subjects from epileptic patients as well as distinguishing epileptic patients with left temporal lobe epilepsy (LTLE) from patients with right temporal lobe epilepsy (RTLE). Achieved results are diagnostic accuracy of 93% with 95% sensitivity and lateralization... 

    Hippocampal shape analysis in epilepsy using Laplace-Beltrami spectrum

    , Article 2011 19th Iranian Conference on Electrical Engineering, ICEE 2011, 17 May 2011 through 19 May 2011 ; May , 2011 , Page(s): 1 - 5 ; ISSN : 21647054 ; 9789644634284 (ISBN) Shishegar, R ; Soltanian Zadeh, H ; Moghadasi, S. R ; Sharif University of Technology
    2011
    Abstract
    Shape analysis plays an important role in many medical imaging studies. One of the recent shape analysis methods uses the Laplace Beltrami eigenvalues which is also used in this paper for global shape comparison of hippocampus of normal subjects and epileptic patients. Popularity of the Laplace Beltrami operator in this field is due to its isometry-invariance which avoids pre-processing steps like mapping, registration, and alignment. In addition, it is capable of revealing fine details in shapes that makes this method a good choice for deformation detecting purposes like epilepsy diagnosis. To examine capability of the proposed method, statistical analysis and two ways of classification,... 

    Extraction of effective constitutive parameters of artificial media using Bloch modes

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 36, Issue 11 , 2019 , Pages 3226-3235 ; 07403224 (ISSN) Sheikh Ansari, A ; Rejaei, B ; Sharif University of Technology
    OSA - The Optical Society  2019
    Abstract
    The effective constitutive parameters of a three-dimensional periodic structure are calculated using its Bloch modes. These modes and their propagation constants are obtained from eigenvectors and eigenvalues of the generalized transfer matrix of a unit layer of the structure. Effective bulk permittivity and permeability tensors of the medium are obtained when two of the Bloch modes are dominant, i.e., propagate without significant decay inside the medium. The effect of the strongly decaying Bloch modes, which are excited at the interface with a conventional medium, are included by means of surface impedance matrices. The results are in excellent agreement with full-wave electromagnetic... 

    Extraction of effective constitutive parameters of artificial media using bloch modes

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 36, Issue 11 , 2019 , Pages 3226-3235 ; 07403224 (ISSN) Sheikh Ansari, A ; Rejaei, B ; Sharif University of Technology
    OSA - The Optical Society  2019
    Abstract
    The effective constitutive parameters of a three-dimensional periodic structure are calculated using its Bloch modes. These modes and their propagation constants are obtained from eigenvectors and eigenvalues of the generalized transfer matrix of a unit layer of the structure. Effective bulk permittivity and permeability tensors of the medium are obtained when two of the Bloch modes are dominant, i.e., propagate without significant decay inside the medium. The effect of the strongly decaying Bloch modes, which are excited at the interface with a conventional medium, are included by means of surface impedance matrices. The results are in excellent agreement with full-wave electromagnetic... 

    Nonlinear aeroelastic response of slender wings based on Wagner function

    , Article Thin-Walled Structures ; Volume 46, Issue 11 , 2008 , Pages 1192-1203 ; 02638231 (ISSN) Shams, Sh ; Sadr Lahidjani, M. H ; Haddadpour, H ; Sharif University of Technology
    2008
    Abstract
    This paper presents a method for nonlinear aeroelastic analysis of Human Powered Aircraft (HPA) wings. In this type of aircraft there is a long, highly flexible wing. Wing flexibility, coupled with long wing span can lead to large deflections during normal flight operation; therefore, a wing in vertical and torsional motion using the second-order form of nonlinear general flexible Euler-Bernoulli beam equations is used for structural modeling. Unsteady linear aerodynamic theory based on Wagner function is used for determination of aerodynamic loading on the wing. Combining these two types of formulations yields the nonlinear integro-differentials aeroelastic equations. Using the Galerkin's... 

    Re-interpreting simultaneous buckling modes of axially compressed isotropic conical shells

    , Article Thin-Walled Structures ; Vol. 84 , November , 2014 , pp. 360-368 ; ISSN: 02638231 Shakouri, M ; Spagnoli, A ; Kouchakzadeh, M. A ; Sharif University of Technology
    Abstract
    Elastic stability of shell structures under certain loading conditions is characterized by a dramatically unstable postbuckling behavior. The presence of simultaneous 'competing' buckling modes (corresponding to the same critical buckling load) is understood to be largely responsible for such behavior. In this paper, within the framework of linear bifurcation eigenvalue analysis and Donnell shallow shell theory, the presence of simultaneous buckling modes in axially compressed isotropic cones is determined using the semi-analytical method of Galerkin. The results are presented in the plane of the dimensionless reciprocal meridional and circumferential buckling half wavelengths, and are... 

    On the prescribed-time attractivity and frozen-time eigenvalues of linear time-varying systems

    , Article Automatica ; Volume 140 , 2022 ; 00051098 (ISSN) Shakouri, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    A system is called prescribed-time attractive if its solution converges at an arbitrary user-defined finite time. In this note, necessary and sufficient conditions are developed for the prescribed-time attractivity of linear time-varying (LTV) systems. It is proved that the frozen-time eigenvalues of a prescribed-time attractive LTV system have negative real parts when the time is sufficiently close to the convergence moment. This result shows that the ubiquitous singularity problem of prescribed-time attractive LTV systems can be avoided without instability effects by switching to the corresponding frozen-time system at an appropriate time. Consequently, it is proved that the time-varying... 

    Aeroelastic analysis of helicopter rotor blade in hover using an efficient reduced-order aerodynamic model

    , Article Journal of Fluids and Structures ; Volume 25, Issue 8 , 2009 , Pages 1243-1257 ; 08899746 (ISSN) Shahverdi, H ; Salehzadeh Noubari, A ; Behbahani Nejad, M ; Haddadpour, H ; Sharif University of Technology
    2009
    Abstract
    This paper presents a coupled flap-lag-torsion aeroelastic stability analysis and response of a hingeless helicopter blade in the hovering flight condition. The boundary element method based on the wake eigenvalues is used for the prediction of unsteady airloads of the rotor blade. The aeroelastic equations of motion of the rotor blade are derived by Galerkin's method. To obtain the aeroelastic stability and response, the governing nonlinear equations of motion are linearized about the nonlinear steady equilibrium positions using small perturbation theory. The equilibrium deflections are calculated through the iterative Newton-Raphson method. Numerical results comprising steady equilibrium... 

    Application of the modified reduced-order aerodynamics modelling approach to aeroelastic analysis

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 223, Issue 3 , 2009 , Pages 257-270 ; 09544100 (ISSN) Shahverdi, H ; Salehzadeh Nobari, A ; Haddadpour, H ; Behbahani Nejad, M ; Sharif University of Technology
    2009
    Abstract
    This study presents the application of the Proposed Modified Reduced-Order Aerodynamics Modelling approach for aeroelastic analysis based on the boundary element method (BEM) as a novel approach. The used BEM has the capability to capture the thickness effect and geometric complexity of a general three-dimensional model. In this approach the reduced-order aerodynamic model is defined through the eigenvalue problem of unsteady flow based on the unknown wake singularities. Based on the used aerodynamic model an explicit algebraic form of the aeroelastic equations is derived that reduces computational efforts and complexity. This special feature enables us to determine the aeroelastic... 

    An efficient reduced-order modelling approach based on fluid eigenmodes and boundary element method

    , Article Journal of Fluids and Structures ; Volume 23, Issue 1 , 2007 , Pages 143-153 ; 08899746 (ISSN) Shahverdi, H ; Nobari, A. S ; Behbahani Nejad, M ; Haddadpour, H ; Sharif University of Technology
    2007
    Abstract
    This paper presents an efficient reduced-order modelling approach based on the boundary element method. In this approach, the eigenvalue problem of the unsteady flows is defined based on the unknown wake singularities. By constructing this reduced-order model, the body quasi-static eigenmodes are removed from the eigensystem and it is possible to obtain satisfactory results without using the static correction technique when enough eigenmodes are used. In addition to the conventional method, eigenanalysis and reduced-order modelling of unsteady flows over a NACA 0012 airfoil, a wing with NACA 0012 section and a wing-body combination are performed using the proposed reduced order modelling... 

    Dynamic analysis of electrorheological fluid sandwich cylindrical shells with functionally graded face sheets using a semi-analytical approach

    , Article Composite Structures ; Volume 295 , 2022 ; 02638223 (ISSN) Shahali, P ; Haddadpour, H ; Shakhesi, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The present research is performed to calculate the natural frequencies, loss factors, and associated mode shapes of a sandwich cylinder with moderately thick functionally graded (FG) face sheets and an electrorheological (ER) fluid core. Each face sheet is assumed to be made of FG materials, and its displacement field is estimated based on the first-order shear deformation theory, like the ER constrained layer. A suitable displacement continuity condition is considered between layers. The ER fluid used in the central middle is analyzed in the pre-yield area and considered electric field dependent. Hamilton's principle is used to acquire the motion equations related to each layer and... 

    MIMO radar beamforming using orthogonal decomposition of correlation matrix

    , Article Circuits, Systems, and Signal Processing ; Volume 32, Issue 4 , 2013 , Pages 1791-1809 ; 0278081X (ISSN) Shadi, K ; Behnia, F ; Sharif University of Technology
    2013
    Abstract
    MIMO radar is the next generation radar which transmits arbitrary waveforms at each one of its apertures. It has been shown that the design of waveforms for MIMO radars in order to synthesize a desired spatial beampattern is mapped into a waveform correlation matrix R design in the narrowband case. As of now, given a desired beampattern or estimated locations information of targets, calculating R has been modeled as an optimization problem like semi-definite programming. Also, in some special cases like rectangular beampattern, closed-form solutions for R has been proposed. In this paper, we introduce a fast algorithm which is capable of designing R in order to achieve more arbitrary... 

    Transmit beampattern synthesis using eigenvalue decomposition in MIMO radar

    , Article ICICS 2011 - 8th International Conference on Information, Communications and Signal Processing, 13 December 2011 through 16 December 2011 ; December , 2011 , Page(s): 1 - 5 ; 9781457700309 (ISBN) Shadi, K ; Behnia, F ; Sharif University of Technology
    2011
    Abstract
    MIMO radar is the next generation radar which transmits arbitrary waveforms at each one of its apertures. It has been shown that design of waveforms for MIMO radars in order to synthesize a desired spatial beampattern is mapped into a waveform correlation matrix (R) design in the narrowband case. Searching for desired R has been modeled as a convex optimization problem which demands considerable processing power. There are also some close form solutions for special cases like rectangular beampatterns. Here we deal with the problem from a matrix eigenvalue theory perspective and show how close form solutions can be found for more general cases relaxing high computational power demand. Our... 

    A heterogeneous diffusive logistic model of a single species population dynamics with predation and harvesting terms

    , Article Nonlinear Analysis, Theory, Methods and Applications ; Volume 156 , 2017 , Pages 1-16 ; 0362546X (ISSN) Shabani Rokn E Vafa, S ; Torabi Tehrani, H ; Sharif University of Technology
    Abstract
    We study existence and multiplicity of positive solutions of a heterogeneous diffusive logistic equation with predation and harvesting terms, −Δu=au−b(x)u2−c, where a,c,m and d are positive constants, Ω a bounded smooth domain in RN, and b(x) is a nonnegative function on Ω¯, with Ω0 a region such that Ω¯0⊂Ω and Ω¯0={x∈Ω:b(x)=0}. Under the strong growth rate assumption, that is, when a is greater than the first eigenvalue of −Δ in Ω0 with Dirichlet boundary condition, we show that the equation has at least one positive solution for 0≤d0. In addition, in case c

    Sensitivity-based generators redispatch to improve electromechanical mode damping considering transmission lines resistance

    , Article 27th Iranian Conference on Electrical Engineering, ICEE 2019, 30 April 2019 through 2 May 2019 ; 2019 , Pages 491-496 ; 9781728115085 (ISBN) Setareh, M ; Parniani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    This paper proposes a novel formula to calculate sensitivities of electromechanical modes to generators active power changes. Quadratic eigenvalue problem is applied to construct the framework of the proposed formula. Sensitivity factors are calculated using power system model parameters and power flow variables, which can be either obtained via state estimation or measured directly by phasor measurement units. The 39-bus New England power system is used to verify performance of the proposed method  

    An analytic methodology to determine generators redispatch for proactive damping of critical electromechanical oscillations

    , Article International Journal of Electrical Power and Energy Systems ; Volume 123 , 2020 Setareh, M ; Parniani, M ; Aminifar, F ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This paper presents a model-based method for applying online proactive generators redispatch to improve damping of the critical electromechanical oscillations of power system. The proposed method comprises two stages: 1) monitoring modal characteristics of oscillatory modes in ambient condition, and 2) applying generators redispatch based on sensitivities of the critical mode to the generators active power changes using a new analytic method. An online identification method such as error feedback lattice recursive least square adaptive filter is applied for online estimation of the oscillatory modes. Then, whenever the damping ratio of an identified mode is less than a preset threshold, its... 

    Sensitivity-based optimal remedial actions to damp oscillatory modes considering security constraints

    , Article International Journal of Electrical Power and Energy Systems ; Volume 135 , 2022 ; 01420615 (ISSN) Setareh, M ; Parniani, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This paper proposes a comprehensive analytic method for applying various optimal remedial actions to improve critical electromechanical modes damping without jeopardizing damping of non-critical modes and violating security constraints of power system. Generators and reactive power sources redisptach, demand side management and the generators voltage reference tuning are remedial actions that are considered here. Dynamic equations of the flux-decay dynamic model of generators, standard dynamic models of excitation system and power system stabilizer and algebraic equations of active and reactive powers balance are formulated in the quadratic eigenvalue problem framework. With simultaneous use... 

    Analytical extraction of leaky modes in circular slab waveguides with arbitrary refractive index profile

    , Article Applied Optics ; Volume 46, Issue 36 , 2007 , Pages 8656-8667 ; 1559128X (ISSN) Sarrafi, P ; Zareian, N ; Mehrany, K ; Sharif University of Technology
    2007
    Abstract
    Circular slab waveguides are conformally transformed into straight inhomogeneous waveguides, where-upon electromagnetic fields in the core are expanded in terms of Legendre polynomial basis functions. Thereafter, different analytical expression of electromagnetic fields in the cladding region, viz. Wentzel-Kramers-Brillouin solution, modified Airy function expansion, and the exact field solution for circular waveguides, i.e., Hankel function of complex order, are each matched to the polynomial expansion of the transverse electric field within the guide. This field matching process renders different boundary conditions to be satisfied by the set of orthogonal Legendre polynomial basis... 

    Hermite polynomial expansion for analysis of electromagnetic slow waves in coupled nano conducting layer with Gaussian profile

    , Article LAPC 2007: 3rd Loughborough Antennas and Propagation Conference, Loughborough, 2 April 2007 through 3 April 2007 ; 2007 , Pages 265-268 ; 1424407761 (ISBN); 9781424407767 (ISBN) Sarrafi, P ; Mehrany, K ; Rashidian, B ; Sharif University of Technology
    2007
    Abstract
    The possibility of electromagnetic slow wave propagation in dielectric slab waveguides, when free two-dimensional interface charge layers are generated at film-substrate and film-cover interfaces, is already explored. In this paper, the propagation of electromagnetic slow waves supported by induced charge layers of nonzero thickness, whose induced charge densities have Gaussian profiles, is investigated for the first time. In order to analyze the effects of inhomogeneity in the conductivity profile, the electric field is expanded in terms of Hermite polynomials and each eigenmode is sought in the complete space spanned by them. © 2007 IEEE  

    Theoretical and experimental analysis of the free vibrations of a shell made of n cone segments joined together

    , Article Thin-Walled Structures ; Volume 108 , 2016 , Pages 416-427 ; 02638231 (ISSN) Sarkheil, S ; Saadat Foumani, M ; Navazi, H. M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    This paper investigates the free vibrations of a shell made of n cone segments joined together. The governing equations of the conical shell were obtained by applying the Sanders shell theory and the Hamilton principle. Then, these governing equations are solved by using the power series method and considering a displacement field which is harmonic function about the time and the circumferential coordinate. Using the boundary conditions of the two ends of the shell and the continuity conditions at the interface section of shell segments, and solving the eigenvalue problem, the natural frequencies and the mode shapes are obtained. Very good agreements exist between the analytical results of...