Loading...
Search for: eigenvalues-and-eigenfunctions
0.014 seconds
Total 205 records

    Investigation of the effect of turbulence intensity and nozzle exit boundary layer thickness on stability pattern of subsonic jet

    , Article Mechanics and Industry ; Volume 20, Issue 1 , 2019 ; 22577777 (ISSN) Gohardehi, S ; Arablu, S ; Afshin, H ; Farhanieh, B ; Sharif University of Technology
    EDP Sciences  2019
    Abstract
    In this study, factors affecting the noise generation by instability waves in a subsonic jet with acoustic Mach number of 0.5 are investigated using linear stability analysis. The base flow required for instability analysis is obtained by modeling the jet stream based on the k-ϵ turbulence model and using the empirical coefficients suggested by Thies and Tam [1]. The resulting base flow profiles are used to solve the linear instability equation, which governs the pressure perturbation for obtaining the eigenvalues and eigenfunctions. The results of linear instability analysis for phase and amplitude of pressure fluctuations are compared against the existing experimental data, which... 

    Estimation and stability over AWGN channel in the presence of fading, noisy feedback channel and different sample rates

    , Article Systems and Control Letters ; Volume 123 , 2019 , Pages 75-84 ; 01676911 (ISSN) Sanjaroon, V ; Farhadi, A ; Khalaj, B. H ; Seyed Motahari, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    This paper is concerned with estimation and stability of control systems over communication links subject to limited capacity, power constraint, fading, noisy feedback, and different transmission rate rather than system sampling rate. A key issue addressed in this paper is that in the presence of noisy feedback associated with channel, which models transmission of finite number of bits over such links as is the case in most practical scenarios, the well-known eigenvalues rate condition is still a tight bound for stability. Based on an information theoretic analysis, necessary conditions are derived for stability of discrete-time linear control systems via the distant controller in the mean... 

    Magneto-mechanical stability of axially functionally graded supported nanotubes

    , Article Materials Research Express ; Volume 6, Issue 12 , 2019 ; 20531591 (ISSN) Ebrahimi Mamaghani, A ; Mirtalebi, H ; Ahmadian, M. T ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    In this paper, size-dependent vibration analysis of axially functionally graded (AFG) supported nanotubes conveying nanoflow under longitudinal magnetic fields are performed, aiming at performance improvement of fluid-interaction nanosystems. Either the density or the elastic modulus of the AFG nanotube varies linearly or exponentially along the axial direction. Based on the nonlocal continuum theory, the higher-order dynamical equation of motion of the system is derived considering no-slip boundary condition. Galerkin discretization technique and eigenvalue analysis are implemented to solve the modeled equation. The validity of the simplified model is justified by comparing the results with... 

    Extraction of effective constitutive parameters of artificial media using bloch modes

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 36, Issue 11 , 2019 , Pages 3226-3235 ; 07403224 (ISSN) Sheikh Ansari, A ; Rejaei, B ; Sharif University of Technology
    OSA - The Optical Society  2019
    Abstract
    The effective constitutive parameters of a three-dimensional periodic structure are calculated using its Bloch modes. These modes and their propagation constants are obtained from eigenvectors and eigenvalues of the generalized transfer matrix of a unit layer of the structure. Effective bulk permittivity and permeability tensors of the medium are obtained when two of the Bloch modes are dominant, i.e., propagate without significant decay inside the medium. The effect of the strongly decaying Bloch modes, which are excited at the interface with a conventional medium, are included by means of surface impedance matrices. The results are in excellent agreement with full-wave electromagnetic... 

    Some lower bounds for the energy of graphs

    , Article Linear Algebra and Its Applications ; Volume 591 , 2020 , Pages 205-214 Akbari, S ; Ghodrati, A. H ; Hosseinzadeh, M. A ; Sharif University of Technology
    Elsevier Inc  2020
    Abstract
    The singular values of a matrix A are defined as the square roots of the eigenvalues of A⁎A, and the energy of A denoted by E(A) is the sum of its singular values. The energy of a graph G, E(G), is defined as the sum of absolute values of the eigenvalues of its adjacency matrix. In this paper, we prove that if A is a Hermitian matrix with the block form A=(BDD⁎C), then E(A)≥2E(D). Also, we show that if G is a graph and H is a spanning subgraph of G such that E(H) is an edge cut of G, then E(H)≤E(G), i.e., adding any number of edges to each part of a bipartite graph does not decrease its energy. Let G be a connected graph of order n and size m with the adjacency matrix A. It is well-known... 

    Trees with a large Laplacian eigenvalue multiplicity

    , Article Linear Algebra and Its Applications ; Volume 586 , 2020 , Pages 262-273 Akbari, S ; van Dam, E. R ; Fakharan, M. H ; Sharif University of Technology
    Elsevier Inc  2020
    Abstract
    In this paper, we study the multiplicity of the Laplacian eigenvalues of trees. It is known that for trees, integer Laplacian eigenvalues larger than 1 are simple and also the multiplicity of Laplacian eigenvalue 1 has been well studied before. Here we consider the multiplicities of the other (non-integral) Laplacian eigenvalues. We give an upper bound and determine the trees of order n that have a multiplicity that is close to the upper bound [Formula presented], and emphasize the particular role of the algebraic connectivity. © 2019 Elsevier Inc  

    The main eigenvalues of signed graphs

    , Article Linear Algebra and Its Applications ; 2020 Akbari, S ; França, F. A. M ; Ghasemian, E ; Javarsineh, M ; de Lima, L. S ; Sharif University of Technology
    Elsevier Inc  2020
    Abstract
    A signed graph Gσ is an ordered pair (V(G),E(G)), where V(G) and E(G) are the set of vertices and edges of G, respectively, along with a map σ that signs every edge of G with +1 or −1. An eigenvalue of the associated adjacency matrix of Gσ, denoted by A(Gσ), is a main eigenvalue if the corresponding eigenspace has a non-orthogonal eigenvector to the all-one vector j. We conjectured that for every graph G≠K2,K4{e}, there is a switching σ such that all eigenvalues of Gσ are main. We show that this conjecture holds for every Cayley graphs, distance-regular graphs, vertex and edge-transitive graphs as well as double stars and paths. © 2020 Elsevier Inc  

    Bending-torsional stability analysis of aerodynamically covered pipes with inclined terminal nozzle and concurrent internal and external flows

    , Article Journal of Fluids and Structures ; Volume 94 , 2020 Askarian, A. R ; Rahmanian, M ; Haddadpour, H ; Dehghani Firouz Abadi, R ; Sharif University of Technology
    Academic Press  2020
    Abstract
    Stability analysis of a cantilevered pipe with an inclined terminal nozzle as well as simultaneous internal and external fluid flows is investigated in this study. The pipe is embedded in an aerodynamic cover with negligible mass and stiffness simply to streamline the external flow and avoid vortex induced vibrations. The structure of pipe is modeled as an Euler–Bernoulli beam and effects of internal fluid flow including flow-induced inertia, Coriolis and centrifugal forces and the follower force induced by the exhausting jet are taken into account. In addition, neglecting the compressibility effect and using the unsteady Wagner model, aerodynamic loading is determined as a distributed... 

    Free vibration of joined cylindrical–hemispherical FGM shells

    , Article Archive of Applied Mechanics ; Volume 90, Issue 10 , 2020 , Pages 2185-2199 Bagheri, H ; Kiani, Y ; Bagheri, N ; Eslami, M. R ; Sharif University of Technology
    Springer  2020
    Abstract
    Free vibration response of a joined shell system including cylindrical and spherical shells is analyzed in this research. It is assumed that the system of joined shell is made from a functionally graded material (FGM). Properties of the shells are assumed to be graded through the thickness. Both shells are unified in thickness. To capture the effects of through-the-thickness shear deformations and rotary inertias, first-order shear deformation theory of shells is used. The Donnell type of kinematic assumptions is adopted to establish the general equations of motion and the associated boundary and continuity conditions with the aid of Hamilton’s principle. The resulting system of equations is... 

    Multi-objective robust design optimization (MORDO) of an aeroelastic high-aspect-ratio wing

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 42, Issue 11 , 2020 Elyasi, M ; Roudbari, A ; Hajipourzadeh, P ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2020
    Abstract
    In this paper, a new approach for multi-objective robust optimization of flutter velocity and maximum displacement of the wing tip are investigated. The wing is under the influence of bending–torsion coupling and its design variables have different levels of uncertainty. In designing and optimizing wings with a high aspect ratio, the optimization process can be done in such a way to increase the flutter velocity, but this can increase the amplitude of the wing tip displacement to a point that leads to the wings damage and structural failure. Therefore, single-objective design optimization may lead to infeasible designs. Thus, for multi-objective optimization, modeling is based on the... 

    Fast estimation of propagation constants in crossed gratings

    , Article Journal of Optics (United Kingdom) ; Volume 22, Issue 2 , 2020 Faghihifar, E ; Akbari, M ; Nekuee, S. A. H ; Sharif University of Technology
    IOP Publishing Ltd  2020
    Abstract
    Fourier-based modal methods are among the most effective numerical tools for the accurate analysis of crossed gratings. However, leading to computationally expensive eigenvalue equations significantly restricts their applicability, particularly when large truncation orders are required. The resultant eigenvalues are the longitudinal propagation constants of the grating and play a key role in applying the boundary conditions, as well as in the convergence and stability analyses. This paper aims to propose simple techniques for the fast estimation of propagation constants in crossed gratings, predominantly with no need to solve an eigenvalue equation. In particular, we show that for regular... 

    Eigenvectors of deformed Wigner random matrices

    , Article IEEE Transactions on Information Theory ; 18 November , 2020 Haddadi, F ; Amini, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    We investigate eigenvectors of rank-one deformations of random matrices B = A + θuu* in which A ∈ RN×N is a Wigner real symmetric random matrix, θ ∈ R+, and u is uniformly distributed on the unit sphere. It is well known that for θ > 1 the eigenvector associated with the largest eigenvalue of B closely estimates u asymptotically, while for θ < 1 the eigenvectors of B are uninformative about u. We examine O(1/N) correlation of eigenvectors with u before phase transition and show that eigenvectors with larger eigenvalue exhibit stronger alignment with deforming vector through an explicit inverse law 1/θ*-x with θ* := θ + 1/θ. This distribution function will be shown to be the ordinary... 

    Vibrations and stability analysis of double current-carrying strips interacting with magnetic field

    , Article Acta Mechanica ; 2020 Hosseinian, A. R ; Firouz Abadi, R. D ; Sharif University of Technology
    Springer  2020
    Abstract
    Interactive vibrations and buckling of double current-carrying strips (DCCS) are investigated in this study. Considering the rotational and transverse deformation of the strip, four coupled equations of motion are obtained using Hamilton’s principle. Using the Galerkin method, mass and stiffness matrices are extracted and the stability of the system is determined by solving the eigenvalue problem. Effects of pretension and elevated temperature on the stability of DCCS are studied for three types of materials and various arrangements. Finally, the effect of horizontal or vertical distance between strips on the critical current value is investigated. According to the results, the effects of... 

    A screw dislocation near a damaged arbitrary inhomogeneity–matrix interface

    , Article International Journal of Damage Mechanics ; Volume 29, Issue 2 , 2020 , Pages 272-296 Kamali, M. T ; Shodja, H. M ; Masoudvaziri, N ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    In the literature, the analytical solutions concerned with the interaction between screw dislocation and surfaces/interfaces have been mainly limited to simple geometries and perfect interfaces. The focus of the current work is to provide an approach based on a rigorous semi-analytical theory suitable for treatment of such surfaces/interfaces that concurrently have complex geometry and imperfect bonding. The proposed approach captures the singularity of the elastic fields exactly. A vast variety of the pertinent interaction problems such as dislocation near a multi-inhomogeneity with arbitrary geometry bonded imperfectly to a matrix, dislocation near the free boundaries of a finite elastic... 

    Optimal exploitation of the resource in remote state preparation

    , Article Physical Review A ; Volume 102, Issue 1 , 15 July , 2020 Nikaeen, M ; Ramezani, M ; Bahrampour, A ; Sharif University of Technology
    American Physical Society  2020
    Abstract
    Transmission efficiency (TE) of remote state preparation (RSP) with a shared quantum state and one bit of classical communication is considered. Following Dakić et al. [Nat. Phys. 8, 666 (2012)10.1038/nphys2377], the encoding and decoding operators of the protocol are restricted to the physically relevant classes of projective measurements and unitary operators, respectively. It is shown that contrary to the previous arguments, the quadratic fidelity as well as the linear fidelity could be a valid figure of merit to quantify the TE of RSP. Then, the TE of the protocol in terms of both linear and quadratic fidelities is evaluated in a fully optimized scenario which includes the maximization... 

    Hybrid anisotropic pentamode mechanical metamaterial produced by additive manufacturing technique

    , Article Applied Physics Letters ; Volume 117, Issue 6 , 2020 Mohammadi, K ; Movahhedy, M. R ; Shishkovsky, I ; Hedayati, R ; Sharif University of Technology
    American Institute of Physics Inc  2020
    Abstract
    Pentamode metamaterials are a type of extremal designer metamaterials, which are able to demonstrate extremely high rigidity in one direction and extremely high compliance in other directions. Pentamodes can, therefore, be considered as building blocks of exotic materials with any arbitrarily selected thermodynamically admissible elasticity tensor. The pentamode lattices can then be envisioned to be combined to construct intermediate extremal materials, such as quadramodes, trimodes, and bimodes. In this study, we constructed several primary types of anisotropic pentamode lattices (with midpoint positioning of 10%, 15%, 20%, 25%, 30%, 35%, and 42% of the main unit cell diagonal) and then... 

    Joint, partially-joint, and individual independent component analysis in multi-subject fMRI data

    , Article IEEE Transactions on Biomedical Engineering ; Volume 67, Issue 7 , 2020 , Pages 1969-1981 Pakravan, M ; Shamsollahi, M. B ; Sharif University of Technology
    IEEE Computer Society  2020
    Abstract
    Objective: Joint analysis of multi-subject brain imaging datasets has wide applications in biomedical engineering. In these datasets, some sources belong to all subjects (joint), a subset of subjects (partially-joint), or a single subject (individual). In this paper, this source model is referred to as joint/partially-joint/individual multiple datasets unidimensional (JpJI-MDU), and accordingly, a source extraction method is developed. Method: We present a deflation-based algorithm utilizing higher order cumulants to analyze the JpJI-MDU source model. The algorithm maximizes a cost function which leads to an eigenvalue problem solved with thin-SVD (singular value decomposition)... 

    Stabilization of nonlinear dynamic systems over limited capacity communication channels

    , Article IEEE Transactions on Automatic Control ; Volume 65, Issue 8 , 2020 , Pages 3655-3662 Sanjaroon, V ; Farhadi, A ; Seyed Motahari, A ; Hosain Khalaj, B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    This article addresses the stabilization of noiseless nonlinear dynamic systems over limited capacity communication channels. It is shown that the stability of nonlinear dynamic systems over memory-less communication channels implies an inequality condition between the Shannon channel capacity and the summation of the positive equilibrium Lyapunov exponents of the dynamic system or, equivalently, the logarithms of the magnitude of the unstable eigenvalues of system Jacobian. Furthermore, we propose an encoder, decoder, and a controller to prove that scalar nonlinear dynamic systems are stabilizable under the aforementioned inequality condition over the digital noiseless and the packet... 

    An analytic methodology to determine generators redispatch for proactive damping of critical electromechanical oscillations

    , Article International Journal of Electrical Power and Energy Systems ; Volume 123 , 2020 Setareh, M ; Parniani, M ; Aminifar, F ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This paper presents a model-based method for applying online proactive generators redispatch to improve damping of the critical electromechanical oscillations of power system. The proposed method comprises two stages: 1) monitoring modal characteristics of oscillatory modes in ambient condition, and 2) applying generators redispatch based on sensitivities of the critical mode to the generators active power changes using a new analytic method. An online identification method such as error feedback lattice recursive least square adaptive filter is applied for online estimation of the oscillatory modes. Then, whenever the damping ratio of an identified mode is less than a preset threshold, its... 

    Multichannel electrocardiogram decomposition using periodic component analysis

    , Article IEEE Transactions on Biomedical Engineering ; Volume 55, Issue 8 , August , 2008 , Pages 1935-1940 ; 00189294 (ISSN) Sameni, R ; Jutten, C ; Shamsollahi, M. B ; Sharif University of Technology
    2008
    Abstract
    In this letter, we propose the application of the generalized eigenvalue decomposition for the decomposition of multichannel electrocardiogram (ECG) recordings. The proposed method uses a modified version of a previously presented measure of periodicity and a phase-wrapping of the RR-interval, for extracting the "most periodic" linear mixtures of a recorded dataset. It is shown that the method is an improved extension of conventional source separation techniques, specifically customized for ECG signals. The method is therefore of special interest for the decomposition and compression of multichannel ECG, and for the removal of maternal ECG artifacts from fetal ECG recordings. © 2006 IEEE