Loading...
Search for: elastic-moduli
0.017 seconds
Total 146 records

    Clay-based electrospun nanofibrous membranes for colored wastewater treatment

    , Article Applied Clay Science ; Volume 168 , 2019 , Pages 77-86 ; 01691317 (ISSN) Hosseini, S. A ; Vossoughi, M ; Mahmoodi, N. M ; Sadrzadeh, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Novel montmorillonite (Mt) chitosan/poly(vinyl alcohol) (PVA) nanocomposite electrospun nanofibrous membranes (ENM) were prepared and utilized for the treatment of colored wastewater. The Mt. with different mass percentages (0, 1.0, 2.0 and 3.0 mass%) was added to the membrane structure, and its effect on morphology, pore size, porosity, mechanical strength, and permeation properties of ENM were investigated. The fabricated membranes were used as affinity membranes for dye removal with ultrafast permeating adsorption. The results showed that incorporating Mt. as a reinforcing agent improved the nanocomposite ENM resistance to compaction. Young's modulus for the prepared membranes increased... 

    Cold atmospheric plasma modification and electrical conductivity induction in gelatin/polyvinylidene fluoride nanofibers for neural tissue engineering

    , Article Artificial Organs ; Volume 46, Issue 8 , 2022 , Pages 1504-1521 ; 0160564X (ISSN) Sahrayi, H ; Hosseini, E ; Ramazani Saadatabadi, A ; Atyabi, S ; Bakhshandeh, H ; Mohamadali, M ; Aidun, A ; Farasati Far, B ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Background: This research follows some investigations through neural tissue engineering, including fabrication, surface treatment, and evaluation of novel self-stimuli conductive biocompatible and degradable nanocomposite scaffolds. Methods: Gelatin as a biobased material and polyvinylidene fluoride (PVDF) as a mechanical, electrical, and piezoelectric improvement agent were co-electrospun. In addition, polyaniline/graphene (PAG) nanoparticles were synthesized and added to gelatin solutions in different percentages to induce electrical conductivity. After obtaining optimum PAG percentage, cold atmospheric plasma (CAP) treatment was applied over the best samples by different plasma variable... 

    Combination of water head control and axis translation techniques in new unsaturated cyclic simple shear tests

    , Article Soil Dynamics and Earthquake Engineering ; Volume 126 , 2019 ; 02677261 (ISSN) Ahmadinezhad, A ; Jafarzadeh, F ; Sadeghi, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A cyclic simple shear device was modified for testing coarse-grained soils at unsaturated conditions. A combined methodology of controlling suction for the practical range of coarse-grained soil water retention curves was adopted. Water head control method was used to accurately control suction within capillary and transition zones of such soils. The axis translation technique, on the other hand, was employed as a complementary approach to reach higher suction values within residual zone. In order to evaluate the performance of the new setup, independent cyclic tests were carried out at various initial suctions including all key points and zones along the primary drying path. The analyses of... 

    Comparison of the experimental behavior of a shape memory alloy in compression and tension

    , Article 2003 ASME International Mechanical Engineering Congress, Washington, DC., 15 November 2003 through 21 November 2003 ; Volume 68 , 2003 , Pages 471-478 ; 07334230 (ISSN) Hesse, T ; Ghorashi, M ; Inman, D. J ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2003
    Abstract
    The concept of Shape Memory Alloy (SMA) has been a subject of extensive research in the recent few years. In many SMA applications, wire elements have been used in order to control structural specifications like shape and stiffness. Since a wire can only be subjected to tensile forces, the available theoretical models for SMA discuss only the tensile loading. The present paper is an endeavor to overcome this shortcoming. It gives experimental results for tension and compression tests on specimens (having different geometries) made of an identical shape memory alloy. The corresponding results are compared with each other. Using stress-strain diagrams, several important material properties are... 

    Composites of rice husk/wheat straw with pMDI resin and polypropylene

    , Article Polymers and Polymer Composites ; Volume 15, Issue 8 , 2007 , Pages 619-626 ; 09673911 (ISSN) Frounchi, M ; Dadbin, S ; Jahanbakhsh, J ; Janat Alipour, M ; Sharif University of Technology
    Rapra Technology Ltd  2007
    Abstract
    The application of agricultural fibers for making particleboards has been studied in two types of composites: (i) type I particleboards were composites of wheat straw and rice husk fibers with polymeric methylene di-phenyl diisocyanate resin (pMDI) as a binder made by compression moulding; (ii) type II particleboards were composites of rice husk and polypropylene made by extrusion and injection moulding. In type I particleboards, the effects of varying the resin content and various combinations of wheat straw/rice husk fibers were investigated and characterised in terms of physical and mechanical properties of particle boards such as modulus of rupture, modulus of elasticity, compression... 

    Compressive modulus and deformation mechanisms of 3DG foams: Experimental investigation and multiscale modeling

    , Article Nanotechnology ; Volume 32, Issue 48 , 2021 ; 09574484 (ISSN) Mahdavi, S. M ; Adibnazari, S ; Del Monte, F ; Gutiérrez, M. C ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    Due to the wide applications of three-dimensional graphene (3DG) foam in bio-sensors, stretchable electronics, and conductive polymer composites, predicting its mechanical behavior is of paramount importance. In this paper, a novel multiscale finite element model is proposed to predict the compressive modulus of 3DG foams with various densities. It considers the effects of pore size and structure and the thickness of graphene walls on 3DG foams' overall behavior. According to the scanning electron microscope images, a unit cell is selected in the microscale step to represent the incidental arrangement of graphene sheets in 3DG foams. After derivation of equivalent elastic constants of the... 

    Contribution of ordered-inordered phenomenon within the interphase region toward increasing elastic modulus in CNT/polymer nanocomposites

    , Article Materials Science and Technology Conference and Exhibition 2015, MS and T 2015, 4 October 2015 through 8 October 2015 ; Volume 1 , October , 2015 , Pages 595-602 ; 9781510813939 (ISBN) Shayesteh Zeraati, A ; Goodarzi Hosseinabadi, H ; NACE International ; Sharif University of Technology
    Association for Iron and Steel Technology, AISTECH  2015
    Abstract
    Exceptional mechanical properties of carbon nanotubes (CNTs) such as high elastic modulus, stiffness and tensile strength have made them as promising reinforcement in polymer nanocomposite systems. The characteristics of CNTs/polymer interphase region directly affect the efficiency of nanotubes for improving the nanocomposite mechanical properties. In this work, the influence of chains alignment within the interphase region on elastic response of the nanocomposite is assessed using a novel ordered-inordered approach. The applicability of the presented approach is examined by implementing the approach on a series of reported data available in the literature. The effects of CNT content,... 

    Coupled effects of suction and degree of saturation on large strain shear modulus of unsaturated sands

    , Article Unsaturated Soils: Research and Applications - Proceedings of the 6th International Conference on Unsaturated Soils, UNSAT 2014 ; Vol. 2, issue , July , 2014 , p. 1559-1564 ; 978-1-138-00150-3 Jafarzadeh, F ; Ahmadinezhad, A ; Sadeghi, H ; Sharif University of Technology
    Abstract
    Predictions of soil behavior in response to dynamic loads require an understanding of dynamic properties of soil. Studies on dynamic properties of unsaturated soils at large-strains are quite limited, while some dynamic loadings, like earthquakes, are in the medium to large-strain ranges. A cyclic simple shear apparatus was developed to measure large-strain shear modulus and damping ratio under different matric suction or degree of saturation. Six cyclic tests, with referring to the soil-water retention curve, were conducted on clean medium sand. Results indicated that shear modulus slightly increases when suction varies from zero up to the air entry value. Approaching the residual value, a... 

    Damage assessment of a concrete arch dam through nonlinear incremental dynamic analysis

    , Article Soil Dynamics and Earthquake Engineering ; Volume 44 , January , 2013 , Pages 127-137 ; 02677261 (ISSN) Alembagheri, M ; Ghaemian, M ; Sharif University of Technology
    2013
    Abstract
    Damage assessment of concrete arch dams is carried out through nonlinear Incremental Dynamic Analysis (IDA) of a typical arch dam. In this study the Morrow Point arch dam is subjected to a set of 12 three-component earthquakes each scaled to 12 increasing intensity levels. The dam-foundation interaction effects have been investigated by varying foundation's modulus of elasticity to be equal and half of dam concrete's modulus of elasticity. Damage propagation through the dam body is investigated and various IDA curves are created. The performance and various limit-states of the dam structure are examined based on the obtained results. Simple damage indices are proposed through comparison of... 

    Damage evolution in Saffil alumina short-fibre reinforced aluminium during tensile testing

    , Article Materials Science and Engineering A ; Volume 395, Issue 1-2 , 2005 , Pages 27-34 ; 09215093 (ISSN) Tavangar, R ; Weber, L ; Mortensen, A ; Sharif University of Technology
    2005
    Abstract
    The evolution of microstructural damage during tensile deformation of pure aluminium reinforced with 10 vol.% alumina short fibres is studied by monitoring the evolution of density and Young's modulus as a function of tensile strain. It is found that Young's modulus drops rapidly until a strain εc ≈ 3%. The composite density remains virtually unchanged in this strain range. At strains above εc, Young's modulus decreases more slowly while the density begins to decrease linearly, indicating void growth in the composite. It is shown that the drop in Young's modulus is linked to fragmentation of fibres aligned along the stress axis, while the decrease in density is related to void opening across... 

    Design, fabrication, and characterization of novel porous conductive scaffolds for nerve tissue engineering

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 64, Issue 18 , 2015 , Pages 969-977 ; 00914037 (ISSN) Baniasadi, H ; Ahmad Ramazani, S. A ; Mashayekhan, S ; Farani, M. R ; Ghaderinezhad, F ; Dabaghi, M ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    Highly conductive polypyrrole/graphene (PYG) nanocomposite was synthesized with chemical oxidation process via emulsion polymerization and used for the preparation of novel porous conductive gelatin/chitosan-based scaffolds. The effect of PYG loading on various properties of scaffolds was investigated. The obtained results indicated that by introducing PYG into the polymeric matrix, the porosity and swelling capacity decreased while electrical conductivity and Young's modulus demonstrated increasing trend. The in vitro biodegradation test revealed that pure gelatin/chitosan matrix lost 80% of its weight after six weeks in the presence of lysozyme whilst the biodegradation rate was... 

    Design, fabrication and characterization of oxidized alginate-gelatin hydrogels for muscle tissue engineering applications

    , Article Journal of Biomaterials Applications ; Volume 31, Issue 1 , 2016 , Pages 152-161 ; 08853282 (ISSN) Baniasadi, H ; Mashayekhan, S ; Fadaoddini, S ; Haghirsharifzamini, Y ; Sharif University of Technology
    SAGE Publications Ltd  2016
    Abstract
    In this study, we reported the preparation of self cross-linked oxidized alginate-gelatin hydrogels for muscle tissue engineering. The effect of oxidation degree (OD) and oxidized alginate/gelatin (OA/GEL) weight ratio were examined and the results showed that in the constant OA/GEL weight ratio, both cross-linking density and Young's modulus enhanced by increasing OD due to increment of aldehyde groups. Furthermore, the degradation rate was increased with increasing OD probably due to decrement in alginate molecular weight during oxidation reaction facilitated degradation of alginate chains. MTT cytotoxicity assays performed on Wharton's Jelly-derived umbilical cord mesenchymal stem cells... 

    Determination of mechanical properties of FCC nano-beams based on molecular dynamics simulations

    , Article 5th International Symposium on Mechatronics and its Applications, ISMA 2008, Amman, 27 May 2008 through 29 May 2008 ; October , 2008 ; 9781424420346 (ISBN) Nejat Pishkenari, H ; Meghdari, A ; Hosseini, A. E ; Sharif University of Technology
    2008
    Abstract
    In this research, we have modeled nano-Beams using molecular dynamics. The scope of our study is FCC metals, therefore an appropriate inter-atomic potential for this kind of materials must be chosen. A multi-body long-range potential proposed by Sutton-Chen, which has been used in many physical investigations of FCC metals is applied in our study. Using conducted simulations, the different mechanical properties of material such as elastic modulus, shear modulus and poison's ratio are calculated. The results show that the elastic properties decrease with increase in nano cantilever size. ©2008 IEEE  

    Development of an accurate finite element model for N-layer MR-laminated beams using a layerwise theory

    , Article Mechanics of Advanced Materials and Structures ; 2017 , Pages 1-8 ; 15376494 (ISSN) Momeni, S ; Zabihollah, A ; Behzad, M ; Sharif University of Technology
    Taylor and Francis Inc  2017
    Abstract
    Laminated composite beams incorporated with magneto-rheological fluid are being used in variety of critical applications. An N-layer magneto-rheological-laminated beam based on layerwise theory has been developed to study the dynamic characteristics. For simulation purpose, an MR-laminated beam with five layers is considered in which two layers filled with magneto-rheological and three layers are made of composite materials. The results of simulations are compared with existing layerwise, first-order shear-deformation theory and experimental tests where it shows the accuracy and functionality of the present model. The complex shear modulus of magneto-rheological fluid has been determined... 

    Development of an accurate finite element model for N-layer MR-laminated beams using a layerwise theory

    , Article Mechanics of Advanced Materials and Structures ; Volume 25, Issue 13 , 2018 , Pages 1148-1155 ; 15376494 (ISSN) Momeni, S ; Zabihollah, A ; Behzad, M ; Sharif University of Technology
    Abstract
    Laminated composite beams incorporated with magneto-rheological fluid are being used in variety of critical applications. An N-layer magneto-rheological-laminated beam based on layerwise theory has been developed to study the dynamic characteristics. For simulation purpose, an MR-laminated beam with five layers is considered in which two layers filled with magneto-rheological and three layers are made of composite materials. The results of simulations are compared with existing layerwise, first-order shear-deformation theory and experimental tests where it shows the accuracy and functionality of the present model. The complex shear modulus of magneto-rheological fluid has been determined... 

    Development of an equation to predict radial modulus of elasticity for single-walled carbon nanotubes

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 222, Issue 6 , 2008 , Pages 1109-1115 ; 09544062 (ISSN) Sakhaee Pour, A ; Ahmadian, M. T ; Gerami, A ; Sharif University of Technology
    2008
    Abstract
    Finite element (FE) method is used to model radial deformation of single-walled carbon nanotube (SWCNT) under hydrostatic pressure. Elastic deformation of the nanostructure is simulated via elastic beams. Properties of the beam element are calculated by considering the stiffness of the covalent bonds between the carbon atoms in the hexagonal lattice. By applying the beam elements in a three-dimensional space, elastic properties of the SWCNT in transverse direction are obtained. In this regard, influences of diameter and tube wall thickness on the radial and circumferential elastic moduli of zigzag and armchair SWCNTs are considered. It is observed that there is a good agreement between the... 

    Development of empirical equations for prediction of modulus of elasticity for monodisperse metallic foams

    , Article Scientia Iranica ; Vol. 21, issue. 6 , 2014 ; ISSN: 10263098 Ahmadian, M. T ; Alkhani, R ; Gobal, A ; Sharif University of Technology
    Abstract
    Metallic foams are a class of lightweight materials that show high potentials for different industrial applications such as automotive and aerospace engineering. However, many factors have prevented metallic foams from being fully utilized in industrial applications. One main factor is that the influences of the porous structure on the mechanical properties of metallic foams are not well known yet. In this paper, a finite element model was used to analyze monodisperse closed cell aluminum foam in order to determine the relationship between its elastic modulus, porosity and pore diameter. A nonlinear relationship was found between the foams porosity, pore diameter and modulus of elasticity.... 

    Discrete kernel functions for fcc crystals within eringen’s nonlocal theory of elasticity

    , Article Journal of Elasticity ; Volume 143, Issue 1 , 2021 ; 03743535 (ISSN) Shodja, H. M ; Shahvaghar Asl, S ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    The dilemma with the deficiencies of the nonlocal kernel functions as the building blocks of the Eringen’s nonlocal theory has been of concern. The aim of the current work is to provide a remedy for the calculation of the components of the nonlocal moduli tensor pertinent to face center cubic (fcc) crystals accounting for their true symmetry group. To this end, three new distinct nonlocal kernel functions which are the discrete atomistic Green’s functions in the stress space are obtained through the nonlocal dispersion relations associated with the longitudinal and shear waves in fcc crystals combined with the corresponding ones calculated via ab initio based on density functional... 

    Ductility of saffil™ short fibre reinforced metals

    , Article Scripta Materialia ; Volume 53, Issue 1 , 2005 , Pages 17-21 ; 13596462 (ISSN) Weber, L ; Tavangar, R ; Mortensen, A ; Sharif University of Technology
    2005
    Abstract
    A critical combination of matrix strain hardening exponent and fiber volume exceeded to confer tensile ductility to short-fiber reinforced metal. The bimodal distribution of tensile ductilities observed in such materials can be attributed to a transition in damage mode, from fiber fragmentation to matrix voiding. Building on results for model composites of this class and making a few specification, a simple criterion can be proposed to predict whether such composites display a low or a high tensile elongation. The results show that, composites of this class are ductile if their matrix strain hardening exponent exceeds by more than around three per cent of unity the fiber volume fraction  

    Dynamic parameters of saturated and unsaturated sand at different ranges of shear strain levels in cyclic simple shear tests

    , Article 14th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering ; 2011 Jafarzadeh, F ; Golshan, Z ; Sharif University of Technology
    2011
    Abstract
    In order to evaluate dynamic properties of Babolsar and Toyoura sands at saturation levels of 25, 50, 75 & 100%, a series of cyclic simple shear tests were carried out. The SGI type cyclic simple shear device was used to study the shear modulus, G, and damping ratio, D, of the above mentioned sands at cyclic shear strain of 0.5, 5 & 10%. The effect of degree of saturation (S), vertical consolidation stress (σ vc) and number of loading cycles (N) were investigated. On the basis of the tests results, the shear modulus approximately remains constant by change of degree of saturation from 25 to 50% and decreases when reaches the degree of saturation 75%. Damping ratio approximately is constant...