Loading...
Search for: elastic-moduli
0.012 seconds
Total 146 records

    Dynamic responses of intervertebral disc during static creep and dynamic cyclic loading: A parametric Poroelastic finite element analysis

    , Article Biomedical Engineering - Applications, Basis and Communications ; Volume 25, Issue 1 , 2013 ; 10162372 (ISSN) Nikkhoo, M ; Haghpanahi, M ; Parnianpour, M ; Wang, J. L ; Sharif University of Technology
    2013
    Abstract
    Low back pain is a common reason for activity limitation in people younger than 45 years old, and was proved to be associated with heavy physical works, repetitive lifting, impact, stationary work postures and vibrations. The study of load transferring and the loading condition encountered in spinal column can be simulated by finite element models. The intervertebral disc is a structure composed of a porous material. Many physical models were developed to simulate this phenomenon. The confounding effects of poroelastic properties and loading conditions on disc mechanical responses are, nevertheless, not cleared yet. The objective of this study was to develop an axisymmetric poroelastic... 

    Effective shear modulus of solids reinforced by randomly oriented- / aligned-elliptic multi-coated nanofibers in micropolar elasticity

    , Article Composites Part B: Engineering ; Volume 143 , 15 June , 2018 , Pages 197-206 ; 13598368 (ISSN) Alemi, B ; Shodja, H. M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Accurate estimation of the in-plane shear modulus of solids reinforced by nano-/micro-size elliptical multi-coated fibers is the focus of this paper. It is well-known that at the scales comparable to the nanoscopic length scales of the material, traditional theory of elasticity ceases to hold and, moreover, due to lack of consideration of such length scales has an innate weakness of sensing the size effect. Therefore, it is proposed to formulate and calculate the effective shear modulus of the nano-/micro-composite within micropolar theory which introduces two material characteristic lengths into the field equations. For this purpose, Mori-Tanaka theory is extended to treat nested... 

    Effective shear modulus of solids reinforced by randomly oriented-/aligned-elliptic nanofibers in couple stress elasticity

    , Article Composites Part B: Engineering ; Volume 117 , 2017 , Pages 150-164 ; 13598368 (ISSN) Shodja, H. M ; Alemi, B ; Sharif University of Technology
    Abstract
    Nowadays, by adding a small amount (about 0.5–5% by weight) of a desired nanomaterial to a matrix having certain properties one may design a multifunctional nanocomposites with a remarkably improved macroscopic properties of interest. The capability of conventional continuum theories in treating the problems of embedded ultra-small inhomogeneity with any of its dimensions comparable to the characteristic lengths of the involved constituent phases is questioned, mainly, on the grounds of the accuracy and the size effect. The micromechanical framework based on the Eshelby's ellipsoidal inclusion theory [1] which has been widely used to estimate the overall behavior of composites falls under... 

    Effect of interphase zone on the overall elastic properties of nanoparticle-reinforced polymer nanocomposites

    , Article Journal of Composite Materials ; Volume 53, Issue 9 , 2019 , Pages 1261-1274 ; 00219983 (ISSN) Amraei, J ; Jam, J. E ; Arab, B ; Firouz Abadi, R. D ; Sharif University of Technology
    SAGE Publications Ltd  2019
    Abstract
    In the current work, the effect of interphase region on the mechanical properties of polymer nanocomposites reinforced with nanoparticles is studied. For this purpose, a closed-form interphase model as a function of radial distance based on finite-size representative volume element is suggested to estimate the mechanical properties of particle-reinforced nanocomposites. The effective Young’s and shear moduli of thermoplastic polycarbonate-based nanocomposites for a wide range of sizes and volume fractions of silicon carbide nanoparticles are investigated using the proposed interphase model and molecular dynamics simulations. In order to investigate the effect of particle size, several unit... 

    Effect of microbeam electrical resistivity on vibration frequency shift of an electrostatically actuated microbeam

    , Article Proceedings of the ASME Design Engineering Technical Conference, 15 August 2010 through 18 August 2010 ; Volume 4 , 2010 , Pages 547-554 ; 9780791844120 (ISBN) Pasharavesh, A ; Ahmadian, M. T ; Alizadeh Vaghasloo, Y ; Sharif University of Technology
    Abstract
    Nonlinear vibration of a microbeam actuated by a suddenly applied voltage with considering the effect of voltage distribution on the beam due to electrical resistivity of beam is investigated. Homotopy perturbation method is implemented to solve the coupled nonlinear partial differential equations of motion. The vibration frequency variation and damping at various resistivities is studied. Considering resistivity, effect of applied voltage and beam length on the frequency shift and damping ratio is analyzed. Findings indicate there exists a jump in frequency shift and damping ratio at a critical resistivity. Variation of critical resistivity with respect to modulus of elasticity and beam... 

    Effect of nanoclays on the mechanical properties and durability of novolac phenolic resin/woven glass fiber composite at various chemical environments

    , Article Composites Part A: Applied Science and Manufacturing ; Vol. 63 , 2014 , pp. 149-158 ; ISSN: 1359835X Eesaee, M ; Shojaei, A ; Sharif University of Technology
    Abstract
    Both natural montmorilonite (CN) and organically modified montmorilonite (CB) improved significantly the mechanical performance of novolac phenolic resin (PF)/woven glass-fiber (GF) composites due to their nanodispersion and good interfacial interaction with the matrix. It was revealed that the incorporation of 2.5 wt% of the clays enhances the elastic modulus up to 38% for CN and 43% for CB. Aging of PF/GF composites at various aqueous solutions, i.e. water, brine and acidic environments, increased stiffness of the composite (∼100-250% increase in elastic modulus) due to possible secondary crosslinking caused by water molecules and hydroxyl groups of PF resin. However, aging led to the... 

    Effect of specimen's age on mechanical properties of plastic concrete walls in dam foundations

    , Article Electronic Journal of Geotechnical Engineering ; Volume 17 D , 2012 , Pages 473-482 ; 10893032 (ISSN) Jafarzadeh, F ; Mousavi, S. H ; Sharif University of Technology
    2012
    Abstract
    According to available information and references, water leakage and internal erosion in bodies and foundations of embankment dams are the main reasons of many problems and failures. To reduce this risk in foundation, plastic cut off walls is one of the most reliable solutions. In this research the effect of specimen's age on the mechanical properties of plastic concrete was studied. This paper summarizes the test results which were conducted in unconfined and triaxial state. Plastic concrete specimens were prepared in the laboratory condition using the materials provided from the Silve dam site. Test results have shown that the time and confining pressure extremely affect the mechanical... 

    Effect of specimen preparation techniques on dynamic properties of unsaturated fine-grained soil at high suctions

    , Article Canadian Geotechnical Journal ; Volume 54, Issue 9 , 2017 , Pages 1310-1319 ; 00083674 (ISSN) Ng, C. W. W ; Baghbanrezvan, S ; Sadeghi, H ; Zhou, C ; Jafarzadeh, F ; Sharif University of Technology
    Canadian Science Publishing  2017
    Abstract
    The seismic response of soil depends on proper evaluation and use of soil dynamic properties, including shear modulus and damping ratio at various strain levels. Despite extensive studies on the shear modulus and damping ratio of saturated soils, research on the dynamic properties of unsaturated fine-grained soils — especially at high suction — is limited. This study aims to investigate the dynamic properties of loess at a variety of initial states resulting from different specimen preparation techniques (reconstituted, recompacted, and intact) and their evolutions due to suction-induced desiccation. Results of resonant column tests show that at initial states, the specimen preparation... 

    Effects of permeability and cementation on the pattern of hydraulically induced fractures in oil sands

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 31, Issue 2 , 2009 , Pages 149-162 ; 15567036 (ISSN) Pak, A ; Chan, D. H ; Sharif University of Technology
    2009
    Abstract
    It is generally accepted that a hydraulically induced fracture in the reservoir is approximately a plane fracture perpendicular to the direction of the in situ minor principal stress. However, field observations, in some cases, do not support the above traditional assumption. This is especially true when hydraulic fracturing technique is applied to the uncemented porous materials such as oil sands. In this article, the pattern of hydraulically induced fractures in oil sands and other geomaterials is discussed. Field observations and experimental investigation results are combined with the outcomes of the numerical simulations of hydro-fracturing in oil sands conducted by the authors to... 

    Effects of saturation degrees, freezing-thawing, and curing on geotechnical properties of lime and lime-cement concretes

    , Article Cold Regions Science and Technology ; Volume 160 , 2019 , Pages 242-251 ; 0165232X (ISSN) Jahandari, S ; Saberian, M ; Tao, Z ; Mojtahedi, S.F ; Li, J ; Ghasemi, M ; Rezvani, S. S ; Li, W ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    There are very limited researches carried out to investigate the influence of saturation degrees, freezing-thawing, and curing times on geotechnical properties of lime concrete (LC) and lime-cement concrete (LCC) due to the capillary action and changes in groundwater table. Subsequently, the primary goal of this research is to investigate the influence of these parameters on mechanical properties of LC and LCC using unconfined compression tests, namely uniaxial compressive strength (UCS), stress-strain behavior, deformability index (I D ), secant modulus (E S ), failure strain, bulk modulus (K), resilient modulus (M R ), brittleness index (I B ), and shear modulus (G). At first, the... 

    Efficient dye removal from aqueous solution by high-performance electrospun nanofibrous membranes through incorporation of SiO2 nanoparticles

    , Article Journal of Cleaner Production ; Volume 183 , 2018 , Pages 1197-1206 ; 09596526 (ISSN) Hosseini, A ; Vossoughi, M ; Mahmoodi, N. M ; Sadrzadeh, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, novel chitosan/poly(vinyl alcohol) (PVA)/SiO2 nanocomposite ENMs were prepared to improve the mechanical strength and permeation properties of ENMs. The effect of various concentrations of SiO2 in the spinning solution (0, 0.5, 1.0 and 2.0 wt %) on the morphology, fiber diameter, porosity, thermomechanical properties, and permeability of the synthesized membranes was investigated. The prepared affinity membranes were utilized for the removal of dye from colored wastewater. Incorporating SiO2, as a reinforcing agent, was found to increase the compaction resistance of the nanocomposite ENMs. With the addition of 0.5 wt % of SiO2, the Young's modulus of the prepared membranes... 

    Elastic moduli tensors, ideal strength, and morphology of stanene based on an enhanced continuum model and first principles

    , Article Mechanics of Materials ; Volume 110 , 2017 , Pages 1-15 ; 01676636 (ISSN) Shodja, H. M ; Ojaghnezhad, F ; Etehadieh, A ; Tabatabaei, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    The present work aims to provide an accurate description of the tensile behavior of the planar as well as low-buckled stanene and to capture their ideal strength in armchair (AC)- and zigzag (ZZ)-directions. For an accurate description of anisotropic response of such hyperelastic materials as stanene, consideration of a highly nonlinear constitutive model in which up to the fourth power of strains is incorporated is inevitable. By utilizing first principles calculations based on density functional theory (DFT), the second, third, fourth, and fifth order elastic moduli tensors corresponding to both planar and low-buckled states are obtained. Moreover, the morphology of the free-standing... 

    Elastoplastic stress study in thick-walled spherical vessels considering finite deformation

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Darijani, H ; Shamsaei, N ; Naghdabadi, R ; Danesh Sararoudi, M ; Sharif University of Technology
    2006
    Abstract
    An exact elasto-plastic analytical solution for large-strained internal pressurized thick-walled spherical vessels made of elastic-linear and nonlinear hardening material is derived in this paper. This solution is based on the notion of finite strains, the deformation theory of Hencky and the yield criteria of von Mises and Tresca. Nolinear elastic solution of an axisymetric boundary value problem is used as a basis to generate its inelastic solution, whereas the Hyper-elastic constitutive equation is invoked to represent the material response in the elastic region. This method treats the material parameters as field variables. Their distributions are obtained in an iterative manner using... 

    Electrophoretic deposition of Ni/SiO2 nanocomposite coating: Fabrication process and tribological and corrosion properties

    , Article Journal of Nano Research ; Volume 26 , 6 January , 2014 , Pages 45-51 ; ISSN: 16625250 Isfahani, A. G ; Ghorbani, M ; Sharif University of Technology
    Abstract
    To the best of our knowledge, this work presents the first successful effort to fabricate and study nanostructured Ni-based composite coatings using the electrophoretic deposition method with nanostructured SiO2 particles. In this work, Ni/SiO2 nanoparticle composite coatings were prepared by electrophoretic deposition (EPD) [1] and their hardness, wear and corrosion resistances [2] were examined. After studying the morphology of the coatings and finding the optimum conditions for uniform coating, in order to improve the mechanical properties as well as resistance to corrosion, sintering was performed. The Ni/SiO2 nanocomposite coatings show excellent hardness (∼376 HV), reduced Young's... 

    Elliptic inhomogeneities and inclusions in anti-plane couple stress elasticity with application to nano-composites

    , Article International Journal of Solids and Structures ; Volume 46, Issue 16 , 2009 , Pages 2978-2987 ; 00207683 (ISSN) Haftbaradaran, H ; Mohammadi Shodja, H ; Sharif University of Technology
    2009
    Abstract
    It is well-known that classical continuum theory has certain deficiencies in predicting material's behavior at the micro- and nanoscales, where the size effect is not negligible. Higher order continuum theories introduce new material constants into the formulation, making the interpretation of the size effect possible. One famous version of these theories is the couple stress theory, invoked to study the anti-plane problems of the elliptic inhomogeneities and inclusions in the present work. The formulation in elliptic coordinates leads to an exact series solution involving Mathieu functions. Subsequently, the elastic fields of a single inhomogeneity in conjunction with the Mori-Tanaka theory... 

    Empirical modeling of mechanical properties of modified collagen/chitosan membrane by response surface methodology

    , Article 24th Iranian Conference on Biomedical Engineering and 2017 2nd International Iranian Conference on Biomedical Engineering, ICBME 2017, 30 November 2017 through 1 December 2017 ; 2018 ; 9781538636091 (ISBN) Ansarizadeh, M ; Mashayekhan, S ; Saadatmand, M ; Khashabi, E ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this study, collagen/chitosan membrane used for guided bone regeneration (GBR) was modified. Collagen and chitosan are routinely used in GBR membrane fabrication. In addition advanced platelet rich fibrin (A-PRF) is a promising substitution for fabricating membrane in dental surgery. Herein, acid soluble collagen from calf skin was extracted and characterized. The combination of A-PRF with collagen/chitosan membrane was investigated in this study. FTIR analysis revealed that chemical crosslinking using EDC/NHS was occurred. The morphology of collagen/chitosan membrane in a gradient manner of chitosan was assessed via SEM images. Response surface methodology (RSM) was used to... 

    Estimation of modulus of elasticity for closed-cell aluminum foam

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 3, Issue PARTS A, B, AND C , 2012 , Pages 1285-1289 ; 9780791845196 (ISBN) Ahmadian, M. T ; Gobal, A ; Alkhani, R ; Sharif University of Technology
    2012
    Abstract
    Monodisperse closed cell aluminum foam was analyzed numerically to determine the relationship between its elastic modulus, porosity and pore diameter. It was found a nonlinear relationship exists between porosity, pore diameter and modulus of elasticity. In this regard, an empirical equation is developed and implemented for the prediction of modulus of elasticity versus porosity and pore diameter. Comparing experimental and analytical approaches by other researchers with those obtained in this research shows agreement exists within 1 to 3 percent  

    Evaluating the effects of different plasticizers on mechanical properties of starch/ clay nanocomposites

    , Article Advanced Materials Research ; Volume 829, 2014 , 2014 , Pages 279-283 ; ISSN: 10226680 ; ISBN: 9783037859070 Sherafati, M ; Mousavi, S. M. A ; Emam Djomeh, Z ; Bagheri, R ; Sharif University of Technology
    Abstract
    Nano-biocomposites are a new class of hybrid materials composed of nano-sized filler (nanofiller) incorporated into a bio-based matrix. Such an association between eco-friendly biopolymers and nano-objects, with the aim to obtain synergic effects, is one of the most innovating routes to enhance the properties of these bio-matrices. In recent years, there has been an increasing interest in Starch as an inexpensive and renewable source has been used as a filler for environmentally friendly plastics for about two decades. However, the poor mechanical properties of starch based biopolymers, leads to use of nanoparticles as reinforcing materials. In the present study, the influence of a... 

    Evaluation of dynamic properties of a calcite cemented gravely sand

    , Article Geotechnical Earthquake Engineering and Soil Dynamics IV Congress 2008 - Geotechnical Earthquake Engineering and Soil Dynamics, Sacramento, CA, 18 May 2008 through 22 May 2008 ; Issue 181 , 2008 ; 08950563 (ISSN); 9780784409756 (ISBN) Haeri, S. M ; Shakeri, M. R ; Shahcheraghi, S. A ; Sharif University of Technology
    2008
    Abstract
    Understanding of the effect of cementation on dynamic behaviour of cemented soil in an earthquake prone area could be crucial for earthquake resistance design. The major section of the city of Tehran has been developed on cemented coarse-grained alluvium. In order to understand the dynamic behaviour of this soil, a series of undrained cyclic triaxial tests were performed on uncemented and artificially calcite-cemented samples. In this paper, two dynamic parameters including dynamic shear modulus and damping ratio based on different definitions are investigated. In this regard the effects of cement content, confining pressure and cyclic deviatoric stress were studied as well. In general by... 

    Evaluation of dynamic properties of cement-admixed clay using neural network and dynamic triaxial test results

    , Article Annual Conference of the Canadian Society for Civil Engineering 2007: Where the Road Ends, Ingenuity Begins, Yellowknife, NT, 6 June 2007 through 9 June 2007 ; Volume 1 , 2007 , Pages 215-223 Bahador, M ; Reinforced Earth Company Ltd.; First Air; Dillon Consulting; FSC Architects and Engineers; DIAVIK Diamond Mines; et al ; Sharif University of Technology
    2007
    Abstract
    In this paper dynamic property of Cement-Admixed clay under a wide range of strains were studied considering the effect of different mixing ratio and the change of confining pressures through dynamic triaxial test. Triaxial tests were conducted on untreated and cement treated soils and the results were then analyzed to study the variations in dynamic elastic modulus (Ed) and the damping ratio (D) of soil specimens at different cement ratio. Increasing cement ratio has a significant effect on Ed of the treated soils, and increases it. In contrast, increasing cement ratio decreases D; however, the rate of decreasing D with increasing cement ratio is not considerable. The feed-forward...