Loading...
Search for: electric-control-equipment
0.008 seconds
Total 45 records

    Dynamic participation of wind farms in system frequency control

    , Article IEEE PES Innovative Smart Grid Technologies Conference Europe, 14 October 2012 through 17 October 2012 ; October , 2012 ; 9781467325974 (ISBN) Toulabi, M ; Ranjbar, A. M ; Karimi, H ; Shiroie, M ; Sharif University of Technology
    2012
    Abstract
    In this paper, the participation of wind farms in load frequency control (LFC) is studied. A previously proposed macromodel for the wind farm is employed to regulate its output power. The wind farm including its proposed control strategy is incorporated into the conventional LFC model. The proposed LFC structure is able to dynamically maintain the system frequency at the nominal value against the power imbalances. To achieve proper transient response, the integral control parameter of the LFC controller is optimized using the genetic algorithm (GA). To verify the effectiveness of the proposed method, several simulation case studies are carried out. The results show that the wind farm can... 

    Load-frequency control of interconnected power system using emotional learning-based intelligent controller

    , Article International Journal of Electrical Power and Energy Systems ; Volume 36, Issue 1 , March , 2012 , Pages 76-83 ; 01420615 (ISSN) Farhangi, R ; Boroushaki, M ; Hosseini, S. H ; Sharif University of Technology
    2012
    Abstract
    In this paper a novel approach based on the emotional learning is proposed for improving the load-frequency control (LFC) system of a two-area interconnected power system with the consideration of generation rate constraint (GRC). The controller includes a neuro-fuzzy system with power error and its derivative as inputs. A fuzzy critic evaluates the present situation, and provides the emotional signal (stress). The controller modifies its characteristics so that the critic's stress is reduced. The convergence and performance of the proposed controller, both in presence and absence of GRC, are compared with those of proportional integral (PI), fuzzy logic (FL), and hybrid neuro-fuzzy (HNF)... 

    Fractional order model reduction approach based on retention of the dominant dynamics: Application in IMC based tuning of FOPI and FOPID controllers

    , Article ISA Transactions ; Volume 50, Issue 3 , July , 2011 , Pages 432-442 ; 00190578 (ISSN) Tavakoli Kakhki, M ; Haeri, M ; Sharif University of Technology
    2011
    Abstract
    Fractional order PI and PID controllers are the most common fractional order controllers used in practice. In this paper, a simple analytical method is proposed for tuning the parameters of these controllers. The proposed method is useful in designing fractional order PI and PID controllers for control of complicated fractional order systems. To achieve the goal, at first a reduction technique is presented for approximating complicated fractional order models. Then, based on the obtained reduced models some analytical rules are suggested to determine the parameters of fractional order PI and PID controllers. Finally, numerical results are given to show the efficiency of the proposed tuning... 

    UPFC for enhancing power system reliability

    , Article IEEE Transactions on Power Delivery ; Volume 25, Issue 4 , 2010 , Pages 2881-2890 ; 08858977 (ISSN) Rajabi Ghahnavieh, A ; Fotuhi Firuzabad, M ; Shahidehpour, M ; Feuillet, R ; Sharif University of Technology
    2010
    Abstract
    This paper discusses various aspects of unified power flow controller (UPFC) control modes and settings and evaluates their impacts on the power system reliability. UPFC is the most versatile flexible ac transmission system device ever applied to improve the power system operation and delivery. It can control various power system parameters, such as bus voltages and line flows. The impact of UPFC control modes and settings on the power system reliability has not been addressed sufficiently yet. A power injection model is used to represent UPFC and a comprehensive method is proposed to select the optimal UPFC control mode and settings. The proposed method applies the results of a contingency... 

    Locating and parameters setting of unified power flow controller for congestion management and improving the voltage profile

    , Article Asia-Pacific Power and Energy Engineering Conference, APPEEC, 28 March 2010 through 31 March 2010 ; March , 2010 ; 21574839 (ISSN) ; 9781424448135 (ISBN) Hashemzadeh, H ; Ehsan, M ; Sharif University of Technology
    2010
    Abstract
    This paper propose a particle swarm optimization based algorithm for locating Unified power flow controller (UPFC), as well as set its parameters, with static point of view in deregulated electricity markets in order to reduce generation cost, voltage violation and manage congestion. The modeling of UPFC has been adapted based on power injection method. In order to verify and validate the effectiveness of the proposed method, it was applied to 24-bus Reliability Test System (RTS) and the results have been discussed  

    Design of pid controller for control of speed of the robotic fish modeled by Lighthill's large amplitude elongated body theory in linear path

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009, Lake Buena Vista, FL ; Volume 10, Issue PART A , 2010 , Pages 117-124 ; 9780791843833 (ISBN) Shahi, M ; Meghdari, A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2010
    Abstract
    Design of robotic fish based on hydrodynamics is presented and Lighthill's Large Amplitude Elongated Body Theory (LAEBT) is used for modeling of the robotic fish in linear path. A PID controller for control of speed in linear path is designed and simulations are presented which shows its effectiveness for speed control of the robotic fish. It has been shown that in perspective of used approximate LAEBT model, the used control law maintains kinematic parameters and therefore, the associated efficiency will be maintained  

    A supervisory fuzzy-PID controller for a MIMO biped robot balance in frontal plane

    , Article 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008, Boston, MA, 31 October 2008 through 6 November 2008 ; Volume 2 , 2009 , Pages 307-314 ; 9780791848630 (ISBN) Zomorodi Moghadam, H ; Haghshenas Jaryani, M ; Farahmand, F ; Sharif University of Technology
    2009
    Abstract
    In this paper we propose to control a bipedal robot in an unstable position by means of a PID controller that gains are turned by a fuzzy logic system. For that, a model of planar 3 linked segment consisting of limb, trunk and extended arms with fixed base is used. Fuzzy if-then rules are constructed based on human expert knowledge and biomechanics studies for tuning of PID's gain. For construction of tuning rules, we have developed an optical measuring system to record experimental data of balance keeping of a human in an unstable position. The control model is based on three sets of different global variables: (1) limb orientation and its derivative, (2) trunk/upper attitude and its... 

    Design of an H∞, PID controller using particle swarm optimization

    , Article International Journal of Control, Automation and Systems ; Volume 7, Issue 2 , 2009 , Pages 273-280 ; 15986446 (ISSN) Zamani, M ; Sadati, N ; Ghartemani, M. K ; Sharif University of Technology
    2009
    Abstract
    This paper proposes a novel method to designing an H∞ PID controller with robust stability and disturbance attenuation. This method uses particle swarm optimization algorithm to minimize a cost function subject to-norm to design robust performance PID controller. We propose two cost functions to design of a multiple-input, multiple-output (MIMO) and single-input, single-output (SISO) robust performance PID controller. We apply this method to a SISO flexible-link manipulator and a MIMO super maneuverable F18/HARV fighter aircraft system as two challenging examples to illustrate the design procedure and to verify performance of the proposed PID controller design methodology. It is shown with... 

    Investigation of switching time and pressure head effects on hydro magnetic micro-pump and flow controller

    , Article 2008 Proceedings of the ASME Fluids Engineering Division Summer Conference, FEDSM 2008, 10 August 2008 through 14 August 2008, Jacksonville, FL ; Volume 2 , 2009 , Pages 463-470 ; 9780791848418 (ISBN) Esmaily Moghadam, M ; Shafii, M. B ; Fluids Engineering Division, ASME ; Sharif University of Technology
    2009
    Abstract
    The significant importance of micro-scaled devices in medicine, lab-on-a-chip, and etc resulted in a vast variety of researches. The idea behind the novel hydro magnetic micro-pump and flow controller is that ferromagnetic particles, mixed and dispersed in a carrier fluid, can be accumulated and retained at specific sites to form pistons in a micro-tube using some external magnetic field sources along the micro-tube. This external magnetic field is related to some solenoids, which are turned on and off alternatively. Depending upon dragging speed of these pistons, which itself is a function of switching time, this device can be used to either increase (pumping) or decrease (valving) the flow... 

    Hydromagnetic micropump and flow controller. part a: experiments with nickel particles added to the water

    , Article Experimental Thermal and Fluid Science ; Volume 33, Issue 6 , 2009 , Pages 1021-1028 ; 08941777 (ISSN) Esmaily Moghadam, M ; Shafii, M. B ; Alavi Dehkordi, E ; Sharif University of Technology
    2009
    Abstract
    The novel idea of the Hydromagnetic Micropump and Flow Controller (HMFC) is used in this paper to construct a laboratory setup capable of bidirectional pumping and controlling the flow in microtubes. A laboratory setup, which contains no moving parts, is integrated with a pressure-driven flow setup to make the presented HMFC device. The device operation is based on controllable motion of magnetic particles, added to the carrier fluid, caused by the magnetic field, produced by solenoids located just next to the microtube. The magnitude of these forces is proportional to the strength and gradient of magnetic field which, in turn, is related to the electrical current and arrangement of the... 

    Forward dynamics simulation of human walking employing an iterative feedback tuning approach

    , Article Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering ; Volume 223, Issue 3 , 2009 , Pages 289-297 ; 09596518 (ISSN) Selk Ghafari, A ; Meghdari, A ; Vossoughi, G. R ; Sharif University of Technology
    2009
    Abstract
    Inverse dynamics analysis as well as the generation of an optimal goal oriented human motion both lead to the problem of finding suitable activations of the redundant muscles involved. This paper employs an iterative feedback tuning approach to perform the forward dynamics simulation of the human musculoskeletal system during level walking. A modified form of the proportional-integral-derivative (PID) controller is proposed to stabilize the movement and provide tracking of problems of the desired lower extremity joint profiles. Controller parameters were determined iteratively using an optimization algorithm to minimize tracking errors during forward dynamics simulation. Static optimization... 

    A new neural network based FOPID controller

    , Article 2008 IEEE International Conference on Networking, Sensing and Control, ICNSC, Sanya, 6 April 2008 through 8 April 2008 ; 2008 , Pages 762-767 ; 9781424416851 (ISBN) Sadati, N ; Ghaffarkhah, A ; Ostadabbas, S ; Sharif University of Technology
    2008
    Abstract
    Fractional order PID controllers are suitable for almost all types of dynamic models. In this paper, a new adaptive fractional order PID controller using neural networks is introduced.The overall performance using the proposed adaptive fractional order PID controller is demonstrated through some examples. It is shown that the new controller scheme can give excellent performance and more robustness in comparison with the conventional controllers like GPC  

    Evaluation of UPFC impacts on power system reliability

    , Article Transmission and Distribution Exposition Conference: 2008 IEEE PES Powering Toward the Future, PIMS 2008, Chicago, IL, 21 April 2008 through 24 April 2008 ; May , 2008 ; 9781424419036 (ISBN) Rajabi Ghahnavieh, A ; Fotuhi Firuzabad, M ; Feuillet, R ; Sharif University of Technology
    2008
    Abstract
    This paper evaluates the reliability impact of UPFC application in power system. The paper proposes a new reliability model for the UPFC which is capable of considering different operating states of UPFC. The model is then applied to a test system to study the reliability impacts of UPFC. The impacts of operating points of different states of the model on the system reliability are analyzed. The role of model parameters in reliability impacts of UPFC is analyzed through the sensitivity analysis. A comparative study is finally conducted to illustrate the applicability of the proposed model compare to that of existing UPFC reliability models. The abilities and deficiencies of the proposed... 

    Power flow control and solutions with dynamic flow controller

    , Article 2008 IEEE Electrical Power and Energy Conference - Energy Innovation, Vancouver, BC, 6 October 2008 through 7 October 2008 ; 2008 ; 9781424428953 (ISBN) Ahmadi, R ; Sheykholeslami, A ; Nabavi Niaki, A ; Ghaffari, H ; Sharif University of Technology
    2008
    Abstract
    this paper presents two new methods for power flow calculation of power systems in presence of Dynamic Flow Controller (DFC), which is a new member of FACTS controllers. In first method A new steady state model of DFC is introduced for the implementation of the device in the conventional Newton-Raphson power flow algorithm. The impact of DFC on power flow is accommodated by adding new entries and modifying some existing ones in the linearized Jacobian equations of the same system without DFC. The focus of second method is on the discrete nature of the DFC and including its effects on power flow. This method is based on Nabavi model for FACTS devices. A case study on a power system located in... 

    Effect of interline power flow controller (IPFC) on interconnected power systems adequacy

    , Article 2008 IEEE 2nd International Power and Energy Conference, PECon 2008, Johor Baharu, 1 December 2008 through 3 December 2008 ; 2008 , Pages 1358-1363 ; 9781424424054 (ISBN) Aminifar, F ; Fotuhi Firuzabad, M ; Nasiri, R ; Khodaei, A ; Sharif University of Technology
    2008
    Abstract
    This paper probes the impact of utilizing an IPFC on the reliability indices of interconnected power systems. First, a concise presentation of IPFC and its structure are provided and the reliability model of two unequally-rated parallel transmission lines equipped with IPFC is then extracted. The assumed IPFC is composed from two parallel converting bridges associated with each line. Afterwards, based-on equivalent assisting unit approach, different commonly-used adequacy indices including the loss of load expectation (LOLE), loss of energy expectation (LOEE) and system minutes (SM) are calculated. A set of numerical analyses are conducted to illustrate the sensitivity of these indices with... 

    A distortion-free phase-locked loop system for FACTS and power electronic controllers

    , Article Electric Power Systems Research ; Volume 77, Issue 8 , 2007 , Pages 1095-1100 ; 03787796 (ISSN) Karimi Ghartemani, M ; Sharif University of Technology
    2007
    Abstract
    This paper presents a single-phase phase-locked loop (PLL) system which is primarily free from the double-frequency ripples from which the conventional PLL system suffers. The proposed PLL is then extended to reject the harmonic components from the input signal and to estimate the phase-angle and frequency of the distorted input signal with no error. Three units of the proposed PLL can be used in three-phase power systems, such as FACTS and HVDC converters, to estimate the phase-angles of the individual phases with no double-frequency ripples and without sensitivity to the presence of harmonics and inter-harmonics. This makes the proposed PLL unique and desirable for applications which... 

    Location of unified power flow controller and its parameters setting for congestion management in pool market model using genetic algorithm

    , Article 2006 International Conference on Power Electronics, Drives and Energy Systems, PEDES '06, New Delhi, 12 December 2006 through 15 December 2006 ; 2006 ; 078039772X (ISBN); 9780780397729 (ISBN) Barati, H ; Ehsan, M ; Fotuhi Firuzabad, M ; Sharif University of Technology
    2006
    Abstract
    In this paper, AC Optimal Power Flow combined with UPFC has been used to manage the congestion of transmission lines in a restructured power system with pool market model. The modeling of Unified Power Flow Controller (UPFC) has been adopted based on bipolar model and power injection method. To determine an appropriate location for UPFC as well as to set its parameters, an approach based on genetic algorithm has been suggested. The modified IEEE 14-bus system is used to determine the effectiveness and applicability of the proposed method and results are discussed. ©2006 IEEE  

    UPFC for enhancing power system reliability

    , Article IEEE Transactions on Power Delivery ; Vol. 25, issue. 4 , 2010 , p. 2881-2890 ; ISSN: 8858977 Rajabi-Ghahnavieh, A ; Fotuhi-Firuzabad, M ; Shahidehpour, M ; Feuillet, R ; Sharif University of Technology
    Abstract
    This paper discusses various aspects of unified power flow controller (UPFC) control modes and settings and evaluates their impacts on the power system reliability. UPFC is the most versatile flexible ac transmission system device ever applied to improve the power system operation and delivery. It can control various power system parameters, such as bus voltages and line flows. The impact of UPFC control modes and settings on the power system reliability has not been addressed sufficiently yet. A power injection model is used to represent UPFC and a comprehensive method is proposed to select the optimal UPFC control mode and settings. The proposed method applies the results of a contingency... 

    Robust analysis and design of power system load frequency control using the Kharitonov's theorem

    , Article International Journal of Electrical Power and Energy Systems ; Vol. 55, issue , 2014 , p. 51-58 Toulabi, M. R ; Shiroei, M ; Ranjbar, A. M ; Sharif University of Technology
    Abstract
    This paper presents a robust decentralized proportional-integral (PI) control design as a solution of the load frequency control (LFC) in a multi-area power system. In the proposed methodology, the system robustness margin and transient performance are optimized simultaneously to achieve the optimum PI controller parameters. The Kharitonov's theorem is used to determine the robustness margin, i.e., the maximal uncertainty bounds under which the stable performance of the power system is guaranteed. The integral time square error (ITSE) is applied to quantify the transient performance of the LFC system. In order to tune the PI gains, the control objective function is optimized using the... 

    Robust non-fragile fractional order PID controller for linear time invariant fractional delay systems

    , Article Journal of Process Control ; Vol. 24, issue. 9 , 2014 , pp. 1489-1494 Mesbahi, A ; Haeri, M ; Sharif University of Technology
    Abstract
    A fractional order PID controller is designed to stabilize fractional delay systems with commensurate orders and multiple commensurate delays, where the time delays in the system may belong to several distinct intervals. Moreover, the controller parameters should belong to given intervals. In order to stabilize the system, the D-subdivision method is employed to choose the stabilizing set of the controller parameters from their available values. Furthermore, the nearest values of the obtained stabilizing set to their mean values are selected as the controller parameters so that a non-fragile controller is concluded. Two numerical examples evaluate the proposed control design method